Wikispaces>PiotrGrochowski |
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | | |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | __FORCETOC__ |
| : This revision was by author [[User:PiotrGrochowski|PiotrGrochowski]] and made on <tt>2016-10-16 12:12:05 UTC</tt>.<br>
| | The [[5-limit|5-limit]] parent [[Comma|comma]] for the dicot family is 25/24, the [[chromatic_semitone|chromatic semitone]]. Its [[monzo|monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie|wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo|7edo]], [[24edo|24edo]] using the val <24 38 55| and [[31edo|31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. |
| : The original revision id was <tt>595544904</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
| |
| The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val <24 38 55| and [[31edo]] using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all.
| |
|
| |
|
| | ==Seven limit children== |
| | The second comma of the [[Normal_lists|normal comma list]] defines which [[7-limit|7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. |
|
| |
|
| ==Seven limit children==
| | =Dicot= |
| The second comma of the [[Normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
| |
| | |
| =Dicot= | |
| Comma: 25/24 | | Comma: 25/24 |
|
| |
|
Line 19: |
Line 12: |
|
| |
|
| Map: [<1 1 2|, <0 2 1|] | | Map: [<1 1 2|, <0 2 1|] |
| | |
| EDOs: [[3edo|3]], [[4edo|4]], [[6edo|6]], [[7edo|7]], [[10edo|10]], [[13edo|13]], [[14edo|14c]], [[17edo|17]], [[20edo|20]], [[24edo|24c]], [[31edo|31c]] | | EDOs: [[3edo|3]], [[4edo|4]], [[6edo|6]], [[7edo|7]], [[10edo|10]], [[13edo|13]], [[14edo|14c]], [[17edo|17]], [[20edo|20]], [[24edo|24c]], [[31edo|31c]] |
| | |
| Badness: 0.0130 | | Badness: 0.0130 |
|
| |
|
| ==7-limit== | | ==7-limit== |
| [[Comma]]s: 15/14, 25/24 | | [[Comma|Comma]]s: 15/14, 25/24 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~5/4 = 336.381 | | [[POTE_tuning|POTE generator]]: ~5/4 = 336.381 |
|
| |
|
| Map: [<1 1 2 3|, <0 2 1 3|] | | Map: [<1 1 2 3|, <0 2 1 3|] |
| | |
| Wedgie: <<2 1 3 -3 -1 4|| | | Wedgie: <<2 1 3 -3 -1 4|| |
| | |
| EDOs: 4, 7, [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]] | | EDOs: 4, 7, [[11edo|11c]], [[14edo|14cd]], [[18edo|18bc]], [[25edo|25bcd]] |
| | |
| Badness: 0.0199 | | Badness: 0.0199 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 15/14, 22/21, 25/24 | | Commas: 15/14, 22/21, 25/24 |
|
| |
|
Line 38: |
Line 36: |
|
| |
|
| Map: [<1 1 2 2 2|, <0 2 1 3 5|] | | Map: [<1 1 2 2 2|, <0 2 1 3 5|] |
| | |
| EDOs: 4e, 7 | | EDOs: 4e, 7 |
| | |
| Badness: 0.0199 | | Badness: 0.0199 |
|
| |
|
| ==Eudicot== | | ==Eudicot== |
| Commas: 15/14, 25/24, 33/32 | | Commas: 15/14, 25/24, 33/32 |
|
| |
|
Line 47: |
Line 47: |
|
| |
|
| Map: [<1 1 2 2 4|, <0 2 1 3 -2|] | | Map: [<1 1 2 2 4|, <0 2 1 3 -2|] |
| | |
| EDOs: 4, 7, 18bc, 25bcd | | EDOs: 4, 7, 18bc, 25bcd |
|
| |
|
| =Flat= | | =Flat= |
| Commas: 21/20, 25/24 | | Commas: 21/20, 25/24 |
|
| |
|
Line 55: |
Line 56: |
|
| |
|
| Map: [<1 1 2 3|, <0 2 1 -1|] | | Map: [<1 1 2 3|, <0 2 1 -1|] |
| | |
| Wedgie: <<2 1 -1 -3 -7 -5|| | | Wedgie: <<2 1 -1 -3 -7 -5|| |
| | |
| EDOs: 3, 4, 11cd | | EDOs: 3, 4, 11cd |
| | |
| Badness: 0.0254 | | Badness: 0.0254 |
|
| |
|
| =Sharp= | | =Sharp= |
| Commas: 25/24, 28/27 | | Commas: 25/24, 28/27 |
|
| |
|
| [[POTE tuning|POTE generator]]: 357.938 | | [[POTE_tuning|POTE generator]]: 357.938 |
|
| |
|
| Map: [<1 1 2 1|, <0 2 1 6|] | | Map: [<1 1 2 1|, <0 2 1 6|] |
| | |
| EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]] | | EDOs: [[10edo|10]], [[37edo|37cd]], [[57edo|57bcd]] |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 25/24, 28/27, 35/33 | | Commas: 25/24, 28/27, 35/33 |
|
| |
|
Line 73: |
Line 78: |
|
| |
|
| Map: [<1 1 2 1 2|, <0 2 1 6 5|] | | Map: [<1 1 2 1 2|, <0 2 1 6 5|] |
| | |
| EDOs: 10, 17d, 27cde | | EDOs: 10, 17d, 27cde |
| | |
| Badness: 0.0224 | | Badness: 0.0224 |
|
| |
|
| =Decimal= | | =Decimal= |
| Commas: 25/24, 49/48 | | Commas: 25/24, 49/48 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 251.557 | | [[POTE_tuning|POTE generator]]: ~7/6 = 251.557 |
|
| |
|
| Map: [<2 0 3 4|, <0 2 1 1|] | | Map: [<2 0 3 4|, <0 2 1 1|] |
| | |
| Wedgie: <<4 2 2 -6 -8 -1|| | | Wedgie: <<4 2 2 -6 -8 -1|| |
| | |
| EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]] | | EDOs: [[10edo|10]], [[14edo|14c]], [[24edo|24c]], [[38edo|38cd]] |
| | |
| Badness: 0.0283 | | Badness: 0.0283 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 25/24, 45/44, 49/48 | | Commas: 25/24, 45/44, 49/48 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 253.493 | | [[POTE_tuning|POTE generator]]: ~7/6 = 253.493 |
|
| |
|
| Map: [<2 0 3 4 -1|, <0 2 1 1 5|] | | Map: [<2 0 3 4 -1|, <0 2 1 1 5|] |
| | |
| EDOs: 10, 14c, 24c, 38cd | | EDOs: 10, 14c, 24c, 38cd |
| | |
| Badness: 0.0267 | | Badness: 0.0267 |
|
| |
|
| ==Decimated== | | ==Decimated== |
| Commas: 25/24, 33/32, 49/48 | | Commas: 25/24, 33/32, 49/48 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~7/6 = 255.066 | | [[POTE_tuning|POTE generator]]: ~7/6 = 255.066 |
|
| |
|
| Map: [<2 0 3 4 10|, <0 2 1 1 -2|] | | Map: [<2 0 3 4 10|, <0 2 1 1 -2|] |
| | |
| EDOs: 4, 10e, 14c | | EDOs: 4, 10e, 14c |
| | |
| Badness: 0.0315 | | Badness: 0.0315 |
|
| |
|
| ==Decibel== | | ==Decibel== |
| Commas: 25/24, 35/33, 49/48 | | Commas: 25/24, 35/33, 49/48 |
|
| |
|
Line 110: |
Line 124: |
|
| |
|
| Map: [<2 0 3 4 7|, <0 2 1 1 0|] | | Map: [<2 0 3 4 7|, <0 2 1 1 0|] |
| | |
| EDOs: 4, 6, 10 | | EDOs: 4, 6, 10 |
| | |
| Badness: 0.0324 | | Badness: 0.0324 |
|
| |
|
| =Dichotic= | | =Dichotic= |
| Commas: 25/24, 64/63 | | Commas: 25/24, 64/63 |
|
| |
|
Line 119: |
Line 135: |
|
| |
|
| Map: [<1 1 2 4|, <0 2 1 -4|] | | Map: [<1 1 2 4|, <0 2 1 -4|] |
| | |
| Wedgie: <<2 1 -4 -3 -12 -12|| | | Wedgie: <<2 1 -4 -3 -12 -12|| |
| | |
| EDOs: 7, 10, 17, 27c, 37c | | EDOs: 7, 10, 17, 27c, 37c |
| | |
| Badness: 0.0376 | | Badness: 0.0376 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 25/24, 45/44, 64/63 | | Commas: 25/24, 45/44, 64/63 |
|
| |
|
Line 129: |
Line 148: |
|
| |
|
| Map: [<1 1 2 4 2|, <0 2 1 -4 5|] | | Map: [<1 1 2 4 2|, <0 2 1 -4 5|] |
| | |
| EDOs: 7, 10, 17, 27ce, 44ce | | EDOs: 7, 10, 17, 27ce, 44ce |
| | |
| Badness: 0.0307 | | Badness: 0.0307 |
|
| |
|
| ==Dichosis== | | ==Dichosis== |
| Commas: 25/24, 35/33, 64/63 | | Commas: 25/24, 35/33, 64/63 |
|
| |
|
Line 138: |
Line 159: |
|
| |
|
| Map: [<1 1 2 4 5|, <0 2 1 -4 -5|] | | Map: [<1 1 2 4 5|, <0 2 1 -4 -5|] |
| | |
| EDOs: 3, 10 | | EDOs: 3, 10 |
| | |
| Badness: 0.0414 | | Badness: 0.0414 |
|
| |
|
| =Jamesbond= | | =Jamesbond= |
| Commas: 25/24, 81/80 | | Commas: 25/24, 81/80 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~8/7 = 258.139 | | [[POTE_tuning|POTE generator]]: ~8/7 = 258.139 |
|
| |
|
| Map: [<7 11 16 0|, <0 0 0 1|] | | Map: [<7 11 16 0|, <0 0 0 1|] |
| | |
| EDOs: 7, [[14edo|14c]] | | EDOs: 7, [[14edo|14c]] |
|
| |
|
| ==11-limit== | | ==11-limit== |
| 11-limit jamesbond is called "septimal" on the Regular Temperament Finder. | | 11-limit jamesbond is called "septimal" on the Regular Temperament Finder. |
|
| |
|
Line 157: |
Line 181: |
|
| |
|
| Map: [<7 11 16 0 24|, <0 0 0 1 0|] | | Map: [<7 11 16 0 24|, <0 0 0 1 0|] |
| | |
| EDOs: 7, 14c | | EDOs: 7, 14c |
| | |
| Badness: 0.0235 | | Badness: 0.0235 |
|
| |
|
| ==13-limit== | | ==13-limit== |
| Commas: 25/24 27/26 33/32 45/44 | | Commas: 25/24 27/26 33/32 45/44 |
|
| |
|
Line 166: |
Line 192: |
|
| |
|
| Map: [<7 11 16 0 24 26|, <0 0 0 1 0 0|] | | Map: [<7 11 16 0 24 26|, <0 0 0 1 0 0|] |
| | |
| EDOs: 7, 14c | | EDOs: 7, 14c |
| | |
| Badness: 0.0230 | | Badness: 0.0230 |
|
| |
|
| ==Septimal== | | ==Septimal== |
| Commas: 25/24, 33/32, 45/44, 65/63 | | Commas: 25/24, 33/32, 45/44, 65/63 |
|
| |
|
Line 175: |
Line 203: |
|
| |
|
| Map: [<7 11 16 0 24 6|, <0 0 0 1 0 1|] | | Map: [<7 11 16 0 24 6|, <0 0 0 1 0 1|] |
| | |
| EDOs: 7, 14cf | | EDOs: 7, 14cf |
| | |
| Badness: 0.0226 | | Badness: 0.0226 |
|
| |
|
| =Sidi= | | =Sidi= |
| Commas: 25/24, 245/243 | | Commas: 25/24, 245/243 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~9/7 = 427.208 | | [[POTE_tuning|POTE generator]]: ~9/7 = 427.208 |
|
| |
|
| Map: [<1 3 3 6|, <0 -4 -2 -9|] | | Map: [<1 3 3 6|, <0 -4 -2 -9|] |
| | |
| EDOs: [[14edo|14c]], [[45edo|45c]], <59 93 135 165| | | EDOs: [[14edo|14c]], [[45edo|45c]], <59 93 135 165| |
| | |
| Badness: 0.0566 | | Badness: 0.0566 |
|
| |
|
| ==11-limit== | | ==11-limit== |
| Commas: 25/24, 45/44, 99/98 | | Commas: 25/24, 45/44, 99/98 |
|
| |
|
Line 193: |
Line 225: |
|
| |
|
| Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|] | | Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|] |
| | |
| EDOs: 14c, 17, 45ce, 59bccde | | EDOs: 14c, 17, 45ce, 59bccde |
| | |
| Badness: 0.0330 | | Badness: 0.0330 |
|
| |
|
| =Quad= | | =Quad= |
| Commas: 9/8, 25/24 | | Commas: 9/8, 25/24 |
|
| |
|
Line 202: |
Line 236: |
|
| |
|
| Map: [<4 6 9 0|, <0 0 0 1|] | | Map: [<4 6 9 0|, <0 0 0 1|] |
| | |
| Wedgie: <<0 0 4 0 6 9|| | | Wedgie: <<0 0 4 0 6 9|| |
| | |
| EDOs: 4, 12bcd | | EDOs: 4, 12bcd |
| Badness: 0.0460</pre></div> | | |
| <h4>Original HTML content:</h4>
| | Badness: 0.0460 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Dicot family</title></head><body><!-- ws:start:WikiTextTocRule:44:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:44 --><!-- ws:start:WikiTextTocRule:45: --><!-- ws:end:WikiTextTocRule:45 --><!-- ws:start:WikiTextTocRule:46: --> | <a href="#Dicot">Dicot</a><!-- ws:end:WikiTextTocRule:46 --><!-- ws:start:WikiTextTocRule:47: --><!-- ws:end:WikiTextTocRule:47 --><!-- ws:start:WikiTextTocRule:48: --><!-- ws:end:WikiTextTocRule:48 --><!-- ws:start:WikiTextTocRule:49: --><!-- ws:end:WikiTextTocRule:49 --><!-- ws:start:WikiTextTocRule:50: --> | <a href="#Flat">Flat</a><!-- ws:end:WikiTextTocRule:50 --><!-- ws:start:WikiTextTocRule:51: --> | <a href="#Sharp">Sharp</a><!-- ws:end:WikiTextTocRule:51 --><!-- ws:start:WikiTextTocRule:52: --><!-- ws:end:WikiTextTocRule:52 --><!-- ws:start:WikiTextTocRule:53: --> | <a href="#Decimal">Decimal</a><!-- ws:end:WikiTextTocRule:53 --><!-- ws:start:WikiTextTocRule:54: --><!-- ws:end:WikiTextTocRule:54 --><!-- ws:start:WikiTextTocRule:55: --><!-- ws:end:WikiTextTocRule:55 --><!-- ws:start:WikiTextTocRule:56: --><!-- ws:end:WikiTextTocRule:56 --><!-- ws:start:WikiTextTocRule:57: --> | <a href="#Dichotic">Dichotic</a><!-- ws:end:WikiTextTocRule:57 --><!-- ws:start:WikiTextTocRule:58: --><!-- ws:end:WikiTextTocRule:58 --><!-- ws:start:WikiTextTocRule:59: --><!-- ws:end:WikiTextTocRule:59 --><!-- ws:start:WikiTextTocRule:60: --> | <a href="#Jamesbond">Jamesbond</a><!-- ws:end:WikiTextTocRule:60 --><!-- ws:start:WikiTextTocRule:61: --><!-- ws:end:WikiTextTocRule:61 --><!-- ws:start:WikiTextTocRule:62: --><!-- ws:end:WikiTextTocRule:62 --><!-- ws:start:WikiTextTocRule:63: --><!-- ws:end:WikiTextTocRule:63 --><!-- ws:start:WikiTextTocRule:64: --> | <a href="#Sidi">Sidi</a><!-- ws:end:WikiTextTocRule:64 --><!-- ws:start:WikiTextTocRule:65: --><!-- ws:end:WikiTextTocRule:65 --><!-- ws:start:WikiTextTocRule:66: --> | <a href="#Quad">Quad</a><!-- ws:end:WikiTextTocRule:66 --><!-- ws:start:WikiTextTocRule:67: -->
| | [[Category:dicot]] |
| <!-- ws:end:WikiTextTocRule:67 -->The <a class="wiki_link" href="/5-limit">5-limit</a> parent <a class="wiki_link" href="/comma">comma</a> for the dicot family is 25/24, the <a class="wiki_link" href="/chromatic%20semitone">chromatic semitone</a>. Its <a class="wiki_link" href="/monzo">monzo</a> is |-3 -1 2&gt;, and flipping that yields &lt;&lt;2 1 -3|| for the <a class="wiki_link" href="/wedgie">wedgie</a>. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are <a class="wiki_link" href="/7edo">7edo</a>, <a class="wiki_link" href="/24edo">24edo</a> using the val &lt;24 38 55| and <a class="wiki_link" href="/31edo">31edo</a> using the val &lt;31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all.<br />
| | [[Category:family]] |
| <br />
| | [[Category:list]] |
| <br />
| | [[Category:overview]] |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:0 -->Seven limit children</h2>
| | [[Category:theory]] |
| The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which <a class="wiki_link" href="/7-limit">7-limit</a> family member we are looking at. Septimal dicot, with wedgie &lt;&lt;2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie &lt;&lt;2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie &lt;&lt;2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie &lt;&lt;4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie &lt;&lt;4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie &lt;&lt;0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Dicot"></a><!-- ws:end:WikiTextHeadingRule:2 -->Dicot</h1>
| |
| Comma: 25/24<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 348.594<br />
| |
| <br />
| |
| Map: [&lt;1 1 2|, &lt;0 2 1|]<br />
| |
| EDOs: <a class="wiki_link" href="/3edo">3</a>, <a class="wiki_link" href="/4edo">4</a>, <a class="wiki_link" href="/6edo">6</a>, <a class="wiki_link" href="/7edo">7</a>, <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/13edo">13</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/17edo">17</a>, <a class="wiki_link" href="/20edo">20</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/31edo">31c</a><br />
| |
| Badness: 0.0130<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h2&gt; --><h2 id="toc2"><a name="Dicot-7-limit"></a><!-- ws:end:WikiTextHeadingRule:4 -->7-limit</h2>
| |
| <a class="wiki_link" href="/Comma">Comma</a>s: 15/14, 25/24<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~5/4 = 336.381<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 3|, &lt;0 2 1 3|]<br />
| |
| Wedgie: &lt;&lt;2 1 3 -3 -1 4||<br />
| |
| EDOs: 4, 7, <a class="wiki_link" href="/11edo">11c</a>, <a class="wiki_link" href="/14edo">14cd</a>, <a class="wiki_link" href="/18edo">18bc</a>, <a class="wiki_link" href="/25edo">25bcd</a><br />
| |
| Badness: 0.0199<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Dicot-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
| |
| Commas: 15/14, 22/21, 25/24<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 342.125<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 2 2|, &lt;0 2 1 3 5|]<br />
| |
| EDOs: 4e, 7<br />
| |
| Badness: 0.0199<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Dicot-Eudicot"></a><!-- ws:end:WikiTextHeadingRule:8 -->Eudicot</h2>
| |
| Commas: 15/14, 25/24, 33/32<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 336.051<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 2 4|, &lt;0 2 1 3 -2|]<br />
| |
| EDOs: 4, 7, 18bc, 25bcd<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h1&gt; --><h1 id="toc5"><a name="Flat"></a><!-- ws:end:WikiTextHeadingRule:10 -->Flat</h1>
| |
| Commas: 21/20, 25/24<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 331.916<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 3|, &lt;0 2 1 -1|]<br />
| |
| Wedgie: &lt;&lt;2 1 -1 -3 -7 -5||<br />
| |
| EDOs: 3, 4, 11cd<br />
| |
| Badness: 0.0254<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Sharp"></a><!-- ws:end:WikiTextHeadingRule:12 -->Sharp</h1>
| |
| Commas: 25/24, 28/27<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 357.938<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 1|, &lt;0 2 1 6|]<br />
| |
| EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/37edo">37cd</a>, <a class="wiki_link" href="/57edo">57bcd</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h2&gt; --><h2 id="toc7"><a name="Sharp-11-limit"></a><!-- ws:end:WikiTextHeadingRule:14 -->11-limit</h2>
| |
| Commas: 25/24, 28/27, 35/33<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 356.106<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 1 2|, &lt;0 2 1 6 5|]<br />
| |
| EDOs: 10, 17d, 27cde<br />
| |
| Badness: 0.0224<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h1&gt; --><h1 id="toc8"><a name="Decimal"></a><!-- ws:end:WikiTextHeadingRule:16 -->Decimal</h1>
| |
| Commas: 25/24, 49/48<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 251.557<br />
| |
| <br />
| |
| Map: [&lt;2 0 3 4|, &lt;0 2 1 1|]<br />
| |
| Wedgie: &lt;&lt;4 2 2 -6 -8 -1||<br />
| |
| EDOs: <a class="wiki_link" href="/10edo">10</a>, <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/24edo">24c</a>, <a class="wiki_link" href="/38edo">38cd</a><br />
| |
| Badness: 0.0283<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="Decimal-11-limit"></a><!-- ws:end:WikiTextHeadingRule:18 -->11-limit</h2>
| |
| Commas: 25/24, 45/44, 49/48<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 253.493<br />
| |
| <br />
| |
| Map: [&lt;2 0 3 4 -1|, &lt;0 2 1 1 5|]<br />
| |
| EDOs: 10, 14c, 24c, 38cd<br />
| |
| Badness: 0.0267<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:20:&lt;h2&gt; --><h2 id="toc10"><a name="Decimal-Decimated"></a><!-- ws:end:WikiTextHeadingRule:20 -->Decimated</h2>
| |
| Commas: 25/24, 33/32, 49/48<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~7/6 = 255.066<br />
| |
| <br />
| |
| Map: [&lt;2 0 3 4 10|, &lt;0 2 1 1 -2|]<br />
| |
| EDOs: 4, 10e, 14c<br />
| |
| Badness: 0.0315<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:22:&lt;h2&gt; --><h2 id="toc11"><a name="Decimal-Decibel"></a><!-- ws:end:WikiTextHeadingRule:22 -->Decibel</h2>
| |
| Commas: 25/24, 35/33, 49/48<br />
| |
| <br />
| |
| POTE generator: ~8/7 = 243.493<br />
| |
| <br />
| |
| Map: [&lt;2 0 3 4 7|, &lt;0 2 1 1 0|]<br />
| |
| EDOs: 4, 6, 10<br />
| |
| Badness: 0.0324<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:24:&lt;h1&gt; --><h1 id="toc12"><a name="Dichotic"></a><!-- ws:end:WikiTextHeadingRule:24 -->Dichotic</h1>
| |
| Commas: 25/24, 64/63<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 356.264<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 4|, &lt;0 2 1 -4|]<br />
| |
| Wedgie: &lt;&lt;2 1 -4 -3 -12 -12||<br />
| |
| EDOs: 7, 10, 17, 27c, 37c<br />
| |
| Badness: 0.0376<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:26:&lt;h2&gt; --><h2 id="toc13"><a name="Dichotic-11-limit"></a><!-- ws:end:WikiTextHeadingRule:26 -->11-limit</h2>
| |
| Commas: 25/24, 45/44, 64/63<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 354.262<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 4 2|, &lt;0 2 1 -4 5|]<br />
| |
| EDOs: 7, 10, 17, 27ce, 44ce<br />
| |
| Badness: 0.0307<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:28:&lt;h2&gt; --><h2 id="toc14"><a name="Dichotic-Dichosis"></a><!-- ws:end:WikiTextHeadingRule:28 -->Dichosis</h2>
| |
| Commas: 25/24, 35/33, 64/63<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 360.659<br />
| |
| <br />
| |
| Map: [&lt;1 1 2 4 5|, &lt;0 2 1 -4 -5|]<br />
| |
| EDOs: 3, 10<br />
| |
| Badness: 0.0414<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:30:&lt;h1&gt; --><h1 id="toc15"><a name="Jamesbond"></a><!-- ws:end:WikiTextHeadingRule:30 -->Jamesbond</h1>
| |
| Commas: 25/24, 81/80<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~8/7 = 258.139<br />
| |
| <br />
| |
| Map: [&lt;7 11 16 0|, &lt;0 0 0 1|]<br />
| |
| EDOs: 7, <a class="wiki_link" href="/14edo">14c</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:32:&lt;h2&gt; --><h2 id="toc16"><a name="Jamesbond-11-limit"></a><!-- ws:end:WikiTextHeadingRule:32 -->11-limit</h2>
| |
| 11-limit jamesbond is called &quot;septimal&quot; on the Regular Temperament Finder.<br />
| |
| <br />
| |
| Commas: 25/24, 33/32, 45/44<br />
| |
| <br />
| |
| POTE generator: ~8/7 = 258.910<br />
| |
| <br />
| |
| Map: [&lt;7 11 16 0 24|, &lt;0 0 0 1 0|]<br />
| |
| EDOs: 7, 14c<br />
| |
| Badness: 0.0235<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:34:&lt;h2&gt; --><h2 id="toc17"><a name="Jamesbond-13-limit"></a><!-- ws:end:WikiTextHeadingRule:34 -->13-limit</h2>
| |
| Commas: 25/24 27/26 33/32 45/44<br />
| |
| <br />
| |
| POTE generator: ~8/7 = 250.764<br />
| |
| <br />
| |
| Map: [&lt;7 11 16 0 24 26|, &lt;0 0 0 1 0 0|]<br />
| |
| EDOs: 7, 14c<br />
| |
| Badness: 0.0230<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:36:&lt;h2&gt; --><h2 id="toc18"><a name="Jamesbond-Septimal"></a><!-- ws:end:WikiTextHeadingRule:36 -->Septimal</h2>
| |
| Commas: 25/24, 33/32, 45/44, 65/63<br />
| |
| <br />
| |
| POTE generator: ~8/7 = 247.447<br />
| |
| <br />
| |
| Map: [&lt;7 11 16 0 24 6|, &lt;0 0 0 1 0 1|]<br />
| |
| EDOs: 7, 14cf<br />
| |
| Badness: 0.0226<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:38:&lt;h1&gt; --><h1 id="toc19"><a name="Sidi"></a><!-- ws:end:WikiTextHeadingRule:38 -->Sidi</h1>
| |
| Commas: 25/24, 245/243<br />
| |
| <br />
| |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~9/7 = 427.208<br />
| |
| <br />
| |
| Map: [&lt;1 3 3 6|, &lt;0 -4 -2 -9|]<br />
| |
| EDOs: <a class="wiki_link" href="/14edo">14c</a>, <a class="wiki_link" href="/45edo">45c</a>, &lt;59 93 135 165|<br />
| |
| Badness: 0.0566<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:40:&lt;h2&gt; --><h2 id="toc20"><a name="Sidi-11-limit"></a><!-- ws:end:WikiTextHeadingRule:40 -->11-limit</h2>
| |
| Commas: 25/24, 45/44, 99/98<br />
| |
| <br />
| |
| POTE generator: ~9/7 = 427.273<br />
| |
| <br />
| |
| Map: [&lt;1 3 3 6 7|, &lt;0 -4 -2 -9 -10|]<br />
| |
| EDOs: 14c, 17, 45ce, 59bccde<br />
| |
| Badness: 0.0330<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:42:&lt;h1&gt; --><h1 id="toc21"><a name="Quad"></a><!-- ws:end:WikiTextHeadingRule:42 -->Quad</h1>
| |
| Commas: 9/8, 25/24<br />
| |
| <br />
| |
| POTE generator: ~5/4 = 324.482<br />
| |
| <br />
| |
| Map: [&lt;4 6 9 0|, &lt;0 0 0 1|]<br />
| |
| Wedgie: &lt;&lt;0 0 4 0 6 9||<br />
| |
| EDOs: 4, 12bcd<br />
| |
| Badness: 0.0460</body></html></pre></div>
| |
|
The 5-limit parent comma for the dicot family is 25/24, the chromatic semitone. Its monzo is |-3 -1 2>, and flipping that yields <<2 1 -3|| for the wedgie. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are 7edo, 24edo using the val <24 38 55| and 31edo using the val <31 49 71|. In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all.
Seven limit children
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot, with wedgie <<2 1 3 -3 -1 4|| adds 36/35, sharp with wedgie <<2 1 6 -3 4 11|| adds 28/27, and dichotic with wedgie <<2 1 -4 -3 -12 -12|| ads 64/63, all retaining the same period and generator. Decimal with wedgie <<4 2 2 -6 -8 -1|| adds 49/48, sidi with wedgie <<4 2 9 -3 6 15|| adds 245/243, and jamesbond with wedgie <<0 0 7 0 11 16|| adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Dicot
Comma: 25/24
POTE generator: ~5/4 = 348.594
Map: [<1 1 2|, <0 2 1|]
EDOs: 3, 4, 6, 7, 10, 13, 14c, 17, 20, 24c, 31c
Badness: 0.0130
7-limit
Commas: 15/14, 25/24
POTE generator: ~5/4 = 336.381
Map: [<1 1 2 3|, <0 2 1 3|]
Wedgie: <<2 1 3 -3 -1 4||
EDOs: 4, 7, 11c, 14cd, 18bc, 25bcd
Badness: 0.0199
11-limit
Commas: 15/14, 22/21, 25/24
POTE generator: ~5/4 = 342.125
Map: [<1 1 2 2 2|, <0 2 1 3 5|]
EDOs: 4e, 7
Badness: 0.0199
Eudicot
Commas: 15/14, 25/24, 33/32
POTE generator: ~5/4 = 336.051
Map: [<1 1 2 2 4|, <0 2 1 3 -2|]
EDOs: 4, 7, 18bc, 25bcd
Flat
Commas: 21/20, 25/24
POTE generator: ~5/4 = 331.916
Map: [<1 1 2 3|, <0 2 1 -1|]
Wedgie: <<2 1 -1 -3 -7 -5||
EDOs: 3, 4, 11cd
Badness: 0.0254
Sharp
Commas: 25/24, 28/27
POTE generator: 357.938
Map: [<1 1 2 1|, <0 2 1 6|]
EDOs: 10, 37cd, 57bcd
11-limit
Commas: 25/24, 28/27, 35/33
POTE generator: ~5/4 = 356.106
Map: [<1 1 2 1 2|, <0 2 1 6 5|]
EDOs: 10, 17d, 27cde
Badness: 0.0224
Decimal
Commas: 25/24, 49/48
POTE generator: ~7/6 = 251.557
Map: [<2 0 3 4|, <0 2 1 1|]
Wedgie: <<4 2 2 -6 -8 -1||
EDOs: 10, 14c, 24c, 38cd
Badness: 0.0283
11-limit
Commas: 25/24, 45/44, 49/48
POTE generator: ~7/6 = 253.493
Map: [<2 0 3 4 -1|, <0 2 1 1 5|]
EDOs: 10, 14c, 24c, 38cd
Badness: 0.0267
Decimated
Commas: 25/24, 33/32, 49/48
POTE generator: ~7/6 = 255.066
Map: [<2 0 3 4 10|, <0 2 1 1 -2|]
EDOs: 4, 10e, 14c
Badness: 0.0315
Decibel
Commas: 25/24, 35/33, 49/48
POTE generator: ~8/7 = 243.493
Map: [<2 0 3 4 7|, <0 2 1 1 0|]
EDOs: 4, 6, 10
Badness: 0.0324
Dichotic
Commas: 25/24, 64/63
POTE generator: ~5/4 = 356.264
Map: [<1 1 2 4|, <0 2 1 -4|]
Wedgie: <<2 1 -4 -3 -12 -12||
EDOs: 7, 10, 17, 27c, 37c
Badness: 0.0376
11-limit
Commas: 25/24, 45/44, 64/63
POTE generator: ~5/4 = 354.262
Map: [<1 1 2 4 2|, <0 2 1 -4 5|]
EDOs: 7, 10, 17, 27ce, 44ce
Badness: 0.0307
Dichosis
Commas: 25/24, 35/33, 64/63
POTE generator: ~5/4 = 360.659
Map: [<1 1 2 4 5|, <0 2 1 -4 -5|]
EDOs: 3, 10
Badness: 0.0414
Jamesbond
Commas: 25/24, 81/80
POTE generator: ~8/7 = 258.139
Map: [<7 11 16 0|, <0 0 0 1|]
EDOs: 7, 14c
11-limit
11-limit jamesbond is called "septimal" on the Regular Temperament Finder.
Commas: 25/24, 33/32, 45/44
POTE generator: ~8/7 = 258.910
Map: [<7 11 16 0 24|, <0 0 0 1 0|]
EDOs: 7, 14c
Badness: 0.0235
13-limit
Commas: 25/24 27/26 33/32 45/44
POTE generator: ~8/7 = 250.764
Map: [<7 11 16 0 24 26|, <0 0 0 1 0 0|]
EDOs: 7, 14c
Badness: 0.0230
Septimal
Commas: 25/24, 33/32, 45/44, 65/63
POTE generator: ~8/7 = 247.447
Map: [<7 11 16 0 24 6|, <0 0 0 1 0 1|]
EDOs: 7, 14cf
Badness: 0.0226
Sidi
Commas: 25/24, 245/243
POTE generator: ~9/7 = 427.208
Map: [<1 3 3 6|, <0 -4 -2 -9|]
EDOs: 14c, 45c, <59 93 135 165|
Badness: 0.0566
11-limit
Commas: 25/24, 45/44, 99/98
POTE generator: ~9/7 = 427.273
Map: [<1 3 3 6 7|, <0 -4 -2 -9 -10|]
EDOs: 14c, 17, 45ce, 59bccde
Badness: 0.0330
Quad
Commas: 9/8, 25/24
POTE generator: ~5/4 = 324.482
Map: [<4 6 9 0|, <0 0 0 1|]
Wedgie: <<0 0 4 0 6 9||
EDOs: 4, 12bcd
Badness: 0.0460