277edo: Difference between revisions
mNo edit summary |
Rework |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|277}} | {{EDO intro|277}} | ||
== Theory == | |||
277edo is a good 5-limit tuning; however, it is in[[consistent]] in the [[7-odd-limit]]. The equal temperament [[tempering out|tempers out]] 32805/32768 ([[schisma]]) and {{monzo| -11 -37 30 }} in the 5-limit. | |||
The [[patent val]] {{val| 277 439 643 778 }} tempers out [[4375/4374]], [[65625/65536]], and 829440/823543 in the 7-limit; [[540/539]], [[6250/6237]], 15488/15435, and 35937/35840 in the 11-limit; [[625/624]], [[729/728]], [[1573/1568]], [[2080/2079]], and [[2200/2197]] in the 13-limit. It [[support]]s [[pontiac]]. | |||
The | The 277d val {{val| 277 439 643 '''777''' }} tempers out [[1029/1024]], [[10976/10935]], and 48828125/48771072 in the 7-limit; [[385/384]], [[441/440]], [[19712/19683]], and 234375/234256 in the 11-limit; 625/624, [[847/845]], [[1001/1000]], and [[1575/1573]] in the 13-limit. It supports [[guiron]] and [[widefourth]]. | ||
===Prime harmonics=== | |||
=== Prime harmonics === | |||
{{Harmonics in equal|277}} | {{Harmonics in equal|277}} | ||
===Subsets and supersets=== | |||
277edo is the 59th [[prime | === Subsets and supersets === | ||
==Regular temperament properties== | 277edo is the 59th [[prime edo]]. | ||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|-439 277}} | | {{monzo| -439 277 }} | ||
|{{ | | {{mapping| 277 439 }} | ||
| 0.0473 | | 0.0473 | ||
| 0.0473 | | 0.0473 | ||
| 1.09 | | 1.09 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|32805/32768, {{monzo|-11 -37 30}} | | 32805/32768, {{monzo| -11 -37 30 }} | ||
|{{ | | {{mapping| 277 439 643 }} | ||
| 0.1398 | | 0.1398 | ||
| 0.1364 | | 0.1364 | ||
| 3.15 | | 3.15 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>ratio | ! Associated<br>ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|115\277 | | 115\277 | ||
|498.19 | | 498.19 | ||
|4/3 | | 4/3 | ||
|[[Helmholtz]] | | [[Helmholtz]] | ||
|} | |} | ||
[[ | <nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | ||
[[ |
Revision as of 06:28, 8 March 2024
← 276edo | 277edo | 278edo → |
Theory
277edo is a good 5-limit tuning; however, it is inconsistent in the 7-odd-limit. The equal temperament tempers out 32805/32768 (schisma) and [-11 -37 30⟩ in the 5-limit.
The patent val ⟨277 439 643 778] tempers out 4375/4374, 65625/65536, and 829440/823543 in the 7-limit; 540/539, 6250/6237, 15488/15435, and 35937/35840 in the 11-limit; 625/624, 729/728, 1573/1568, 2080/2079, and 2200/2197 in the 13-limit. It supports pontiac.
The 277d val ⟨277 439 643 777] tempers out 1029/1024, 10976/10935, and 48828125/48771072 in the 7-limit; 385/384, 441/440, 19712/19683, and 234375/234256 in the 11-limit; 625/624, 847/845, 1001/1000, and 1575/1573 in the 13-limit. It supports guiron and widefourth.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.15 | -0.75 | +1.57 | -1.14 | -0.09 | -0.98 | +1.40 | -0.12 | +1.47 | -1.35 |
Relative (%) | +0.0 | -3.5 | -17.4 | +36.3 | -26.3 | -2.2 | -22.7 | +32.4 | -2.7 | +33.9 | -31.2 | |
Steps (reduced) |
277 (0) |
439 (162) |
643 (89) |
778 (224) |
958 (127) |
1025 (194) |
1132 (24) |
1177 (69) |
1253 (145) |
1346 (238) |
1372 (264) |
Subsets and supersets
277edo is the 59th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-439 277⟩ | [⟨277 439]] | 0.0473 | 0.0473 | 1.09 |
2.3.5 | 32805/32768, [-11 -37 30⟩ | [⟨277 439 643]] | 0.1398 | 0.1364 | 3.15 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 115\277 | 498.19 | 4/3 | Helmholtz |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct