137edo: Difference between revisions
Jump to navigation
Jump to search
274edo as a correction |
+regular temperament properties |
||
Line 12: | Line 12: | ||
[[274edo]], which doubles it, provides a correction for its approximation to harmonic 7. | [[274edo]], which doubles it, provides a correction for its approximation to harmonic 7. | ||
==Regular temperament properties== | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" |[[Subgroup]] | |||
! rowspan="2" |[[Comma list|Comma List]] | |||
! rowspan="2" |[[Mapping]] | |||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | |||
! colspan="2" |Tuning Error | |||
|- | |||
![[TE error|Absolute]] (¢) | |||
![[TE simple badness|Relative]] (%) | |||
|- | |||
|2.3 | |||
|{{monzo|-217 137}} | |||
|{{val|137 217}} | |||
| 0.3865 | |||
| 0.3866 | |||
| 4.41 | |||
|- | |||
|2.3.5 | |||
|{{monzo|-21 3 7}}, {{monzo|-13 17 -6}} | |||
|{{val|137 217 318}} | |||
| 0.3887 | |||
| 0.3157 | |||
| 3.60 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per 8ve | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
|1 | |||
|3\137 | |||
|26.28 | |||
|1594323/1562500 | |||
|[[Sfourth]] (5-limit) | |||
|- | |||
|1 | |||
|4\137 | |||
|35.04 | |||
|1990656/1953125 | |||
|[[Gammic]] | |||
|- | |||
|1 | |||
|31\137 | |||
|271.53 | |||
|75/64 | |||
|[[Orson]] | |||
|- | |||
|1 | |||
|36\137 | |||
|315.33 | |||
|6/5 | |||
|[[Parakleismic]] | |||
|- | |||
|1 | |||
|59\137 | |||
|516.79 | |||
|27/20 | |||
|[[Gravity]] | |||
|- | |||
|1 | |||
|63\137 | |||
|551.82 | |||
|9765625/7077888 | |||
|[[Emka]] (5-limit) | |||
|} | |||
== Diagrams == | == Diagrams == |
Revision as of 21:18, 3 November 2023
← 136edo | 137edo | 138edo → |
Theory
137edo provides the optimal patent val for 7-limit orwell temperament and for the planar temperament tempering out 2430/2401. It tempers out 2109375/2097152 (semicomma) in the 5-limit; 225/224 and 1728/1715 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.23 | -0.91 | +3.44 | +0.51 | +0.35 | +0.15 | +0.30 | +2.38 | +4.00 | +2.41 |
Relative (%) | +0.0 | -14.0 | -10.4 | +39.2 | +5.8 | +4.0 | +1.8 | +3.4 | +27.2 | +45.7 | +27.5 | |
Steps (reduced) |
137 (0) |
217 (80) |
318 (44) |
385 (111) |
474 (63) |
507 (96) |
560 (12) |
582 (34) |
620 (72) |
666 (118) |
679 (131) |
Subsets and supersets
Since 137 is the 33rd prime number, 137edo has no proper divisors aside from 1.
274edo, which doubles it, provides a correction for its approximation to harmonic 7.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-217 137⟩ | ⟨137 217] | 0.3865 | 0.3866 | 4.41 |
2.3.5 | [-21 3 7⟩, [-13 17 -6⟩ | ⟨137 217 318] | 0.3887 | 0.3157 | 3.60 |
Rank-2 temperaments
Periods per 8ve |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 3\137 | 26.28 | 1594323/1562500 | Sfourth (5-limit) |
1 | 4\137 | 35.04 | 1990656/1953125 | Gammic |
1 | 31\137 | 271.53 | 75/64 | Orson |
1 | 36\137 | 315.33 | 6/5 | Parakleismic |
1 | 59\137 | 516.79 | 27/20 | Gravity |
1 | 63\137 | 551.82 | 9765625/7077888 | Emka (5-limit) |
Diagrams
A diagram of 7-limit orwell based on the 31\137edo generator: