1600edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
Adopt template: EDO intro; cleanup; clarify the title row of the rank-2 temp table
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''1600 equal divisions of the octave''' ('''1600edo'''), or the '''1600-tone equal temperament''' ('''1600tet'''), '''1600 equal temperament''' ('''1600et''') when viewed from a [[regular temperament]] perspective, divides the [[octave]] into 1600 [[equal]] parts of exactly 750 [[cent|millicents]] each.
{{EDO intro|1600}}


== Theory ==
== Theory ==
Line 6: Line 6:


In the 5-limit, it supports [[kwazy]]. In the 11-limit, it supports the rank-3 temperament [[thor]]. In higher limits, it tempers out [[12376/12375]] in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered [[flashmic chords]].  
In the 5-limit, it supports [[kwazy]]. In the 11-limit, it supports the rank-3 temperament [[thor]]. In higher limits, it tempers out [[12376/12375]] in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered [[flashmic chords]].  
===Odd harmonics===
 
=== Odd harmonics ===
{{Harmonics in equal|1600}}
{{Harmonics in equal|1600}}
===Subsets and supersets===
 
=== Subsets and supersets ===
1600's divisors are {{EDOs|1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800}}.  
1600's divisors are {{EDOs|1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800}}.  


One step of it is the [[relative cent]] for [[16edo|16]]. It's high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called ''śata'' in the context of 16edo [[Armodue theory]].  
One step of it is the [[relative cent]] for [[16edo|16]]. Its high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called ''śata'' in the context of 16edo [[Armodue theory]].  
 
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
Line 25: Line 28:
| 2.3.5
| 2.3.5
| {{Monzo| -53 10 16 }}, {{monzo| 26 -75 40 }}
| {{Monzo| -53 10 16 }}, {{monzo| 26 -75 40 }}
| [{{val| 1600 2536 3715 }}]
| {{mapping| 1600 2536 3715 }}
| -0.0003
| -0.0003
| 0.0228
| 0.0228
Line 32: Line 35:
| 2.3.5.7
| 2.3.5.7
| 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }}
| 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }}
| [{{val| 1600 2536 3715 4492 }}]
| {{mapping| 1600 2536 3715 4492 }}
| -0.0157
| -0.0157
| 0.0332
| 0.0332
Line 39: Line 42:
| 2.3.5.7.11
| 2.3.5.7.11
| 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }}
| 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }}
| [{{val| 1600 2536 3715 4492 5535 }}]
| {{mapping| 1600 2536 3715 4492 5535 }}
| -0.0172
| -0.0172
| 0.0329
| 0.0329
Line 46: Line 49:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543
| [{{val| 1600 2536 3715 4492 5535 5921 }}]
| {{mapping| 1600 2536 3715 4492 5535 5921 }}
| -0.0087
| -0.0087
| 0.0356
| 0.0356
Line 53: Line 56:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869
| [{{val| 1600 2536 3715 4492 5535 5921 6540 }}]
| {{mapping| 1600 2536 3715 4492 5535 5921 6540 }}
| -0.0163
| -0.0163
| 0.0331
| 0.0331
Line 62: Line 65:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator
! Generator*
! Cents
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
Line 97: Line 100:
| [[Tetraicosic]]
| [[Tetraicosic]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 14:54, 15 October 2023

← 1599edo 1600edo 1601edo →
Prime factorization 26 × 52
Step size 0.75 ¢ 
Fifth 936\1600 (702 ¢) (→ 117\200)
Semitones (A1:m2) 152:120 (114 ¢ : 90 ¢)
Consistency limit 37
Distinct consistency limit 37

Template:EDO intro

Theory

1600edo is a very strong 37-limit system, being distinctly consistent in the 37-limit with a smaller relative error than anything else with this property until 4501. It is also the first division past 311 with a lower 43-limit relative error.

In the 5-limit, it supports kwazy. In the 11-limit, it supports the rank-3 temperament thor. In higher limits, it tempers out 12376/12375 in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered flashmic chords.

Odd harmonics

Approximation of prime harmonics in 1600edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.045 -0.064 +0.174 -0.068 +0.222 +0.045 +0.237 +0.226 +0.173 +0.214
Relative (%) +0.0 +6.0 -8.5 +23.2 -9.1 +29.6 +5.9 +31.6 +30.1 +23.0 +28.6
Steps
(reduced)
1600
(0)
2536
(936)
3715
(515)
4492
(1292)
5535
(735)
5921
(1121)
6540
(140)
6797
(397)
7238
(838)
7773
(1373)
7927
(1527)

Subsets and supersets

1600's divisors are 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800.

One step of it is the relative cent for 16. Its high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called śata in the context of 16edo Armodue theory.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [-53 10 16, [26 -75 40 [1600 2536 3715]] -0.0003 0.0228 3.04
2.3.5.7 4375/4374, [36 -5 0 -10, [-17 5 16 -10 [1600 2536 3715 4492]] -0.0157 0.0332 4.43
2.3.5.7.11 3025/3024, 4375/4374, [24 -1 -5 0 1, [15 1 7 -8 -3 [1600 2536 3715 4492 5535]] -0.0172 0.0329 4.39
2.3.5.7.11.13 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 [1600 2536 3715 4492 5535 5921]] -0.0087 0.0356 4.75
2.3.5.7.11.13.17 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 [1600 2536 3715 4492 5535 5921 6540]] -0.0163 0.0331 4.41

Rank-2 temperaments

Periods
per 8ve
Generator* Cents* Associated
Ratio
Temperaments
2 217\1600 162.75 1125/1024 Kwazy
32 23\1600 17.25 ? Dam / dike / polder
32 121\1600
(21/1600)
90.75
(15.75)
48828125/46294416
(?)
Windrose
32 357\1600
(7\1600)
267.75
(5.25)
245/143
(?)
Germanium
80 629\1600
(9\1600)
471.75
(6.75)
130/99
(?)
Tetraicosic

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct