574edo: Difference between revisions
mNo edit summary |
Rework theory; +subsets and supersets; cleanup; clarify the title row of the rank-2 temp table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|574}} | {{EDO intro|574}} | ||
== Theory == | == Theory == | ||
574 = 14 × 41, and 574edo shares the [[harmonic]] [[3/1|3]] with [[41edo]]. Unfortunately, it is only [[consistent]] to the [[5-odd-limit]], and the [[patent val]] and the 574d [[val]] are about equally viable. | |||
The 574d val [[tempering out|tempers out]] 4375/4374 ([[ragisma]]), 29360128/29296875 (quasiorwellisma), and 40500000/40353607 in the 7-limit; [[3025/3024]], [[5632/5625]], [[9801/9800]], and [[19712/19683]] in the 11-limit; [[676/675]], [[4225/4224]], and [[10648/10647]] in the 13-limit. | |||
The patent val tempers out 2100875/2097152 ([[rainy comma]]), 67108864/66976875 ([[vishnuzma]]), 49009212/48828125, and 78125000/78121827 ([[euzenius comma]]) in the 7-limit; 5632/5625, 42875/42768, 117649/117128, [[131072/130977]], 160083/160000, 161280/161051, 166698/166375, 391314/390625, and [[532400/531441]] in the 11-limit; 676/675, [[1001/1000]], [[2080/2079]], [[4096/4095]], and 4225/4224 in the 13-limit. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|574}} | {{Harmonics in equal|574}} | ||
==Regular temperament properties== | |||
=== Subsets and supersets === | |||
Since 574 factors into 2 × 7 × 41, 574edo has subset edos {{EDOs| 2, 7, 14, 41, 82, and 287 }}. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
| | ! [[TE error|Absolute]] (¢) | ||
| | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|23 6 -14}}, {{monzo|42 -47 14}} | | {{monzo| 23 6 -14 }}, {{monzo| 42 -47 14 }} | ||
|{{ | | {{mapping| 574 910 1333 }} | ||
| -0.1658 | | -0.1658 | ||
| 0.1260 | | 0.1260 | ||
| 6.03 | | 6.03 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|10976/10935, 2100875/2097152, | | 10976/10935, 2100875/2097152, 49009212/48828125 | ||
|{{ | | {{mapping| 574 910 1333 1611 }} (574) | ||
| -0.0459 | | -0.0459 | ||
| 0.2347 | | 0.2347 | ||
| 11.23 | | 11.23 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|5632/5625, 10976/10935, | | 5632/5625, 10976/10935, 131072/130977, 166698/166375 | ||
|{{ | | {{mapping| 574 910 1333 1611 1986 }} (574) | ||
| -0.0713 | | -0.0713 | ||
| 0.2160 | | 0.2160 | ||
| 10.33 | | 10.33 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| | | 676/675, 1001/1000, 4096/4095, 10976/10935, 166698/166375 | ||
|{{ | | {{mapping| 574 910 1333 1611 1986 2124 }} (574) | ||
| -0.0544 | | -0.0544 | ||
| 0.2007 | | 0.2007 | ||
Line 55: | Line 59: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|2 | | 2 | ||
|34\571 | | 34\571 | ||
|71.454 | | 71.454 | ||
|25/24 | | 25/24 | ||
|[[Vishnu]] | | [[Vishnu]] (574d) | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct |
Revision as of 08:33, 29 October 2023
← 573edo | 574edo | 575edo → |
Theory
574 = 14 × 41, and 574edo shares the harmonic 3 with 41edo. Unfortunately, it is only consistent to the 5-odd-limit, and the patent val and the 574d val are about equally viable.
The 574d val tempers out 4375/4374 (ragisma), 29360128/29296875 (quasiorwellisma), and 40500000/40353607 in the 7-limit; 3025/3024, 5632/5625, 9801/9800, and 19712/19683 in the 11-limit; 676/675, 4225/4224, and 10648/10647 in the 13-limit.
The patent val tempers out 2100875/2097152 (rainy comma), 67108864/66976875 (vishnuzma), 49009212/48828125, and 78125000/78121827 (euzenius comma) in the 7-limit; 5632/5625, 42875/42768, 117649/117128, 131072/130977, 160083/160000, 161280/161051, 166698/166375, 391314/390625, and 532400/531441 in the 11-limit; 676/675, 1001/1000, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.484 | +0.446 | -0.882 | +0.598 | -0.110 | -0.426 | -0.649 | +0.994 | -1.006 | +0.609 |
Relative (%) | +0.0 | +23.2 | +21.3 | -42.2 | +28.6 | -5.2 | -20.4 | -31.0 | +47.5 | -48.1 | +29.1 | |
Steps (reduced) |
574 (0) |
910 (336) |
1333 (185) |
1611 (463) |
1986 (264) |
2124 (402) |
2346 (50) |
2438 (142) |
2597 (301) |
2788 (492) |
2844 (548) |
Subsets and supersets
Since 574 factors into 2 × 7 × 41, 574edo has subset edos 2, 7, 14, 41, 82, and 287.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [23 6 -14⟩, [42 -47 14⟩ | [⟨574 910 1333]] | -0.1658 | 0.1260 | 6.03 |
2.3.5.7 | 10976/10935, 2100875/2097152, 49009212/48828125 | [⟨574 910 1333 1611]] (574) | -0.0459 | 0.2347 | 11.23 |
2.3.5.7.11 | 5632/5625, 10976/10935, 131072/130977, 166698/166375 | [⟨574 910 1333 1611 1986]] (574) | -0.0713 | 0.2160 | 10.33 |
2.3.5.7.11.13 | 676/675, 1001/1000, 4096/4095, 10976/10935, 166698/166375 | [⟨574 910 1333 1611 1986 2124]] (574) | -0.0544 | 0.2007 | 9.60 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
2 | 34\571 | 71.454 | 25/24 | Vishnu (574d) |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct