Fractional-octave temperaments: Difference between revisions
i'll finish up the page after lunch |
→Theory: remove those links because I'll be adding them to the table |
||
Line 9: | Line 9: | ||
The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, [[compton family]] tempers out the Pythagorean comma and maps 7 steps of 12edo to [[3/2]]. Likewise, a lot of 10th-octave temperaments have a [[13/8]] as 7\10, and 26th-octave temperaments often have a [[7/4]] for 21\26. | The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, [[compton family]] tempers out the Pythagorean comma and maps 7 steps of 12edo to [[3/2]]. Likewise, a lot of 10th-octave temperaments have a [[13/8]] as 7\10, and 26th-octave temperaments often have a [[7/4]] for 21\26. | ||
== | == Individual pages of temperaments by equal division == | ||
=== 2 to 40 === | |||
Many pages are yet to be created. | |||
{| class="wikitable" | |||
|+ | |||
| | |||
|2 | |||
|3 | |||
|4 | |||
|5 | |||
|6 | |||
|7 | |||
|8 | |||
|9 | |||
|10 | |||
|- | |||
|11 | |||
|12 | |||
|13 | |||
|14 | |||
|15 | |||
|16 | |||
|17 | |||
|18 | |||
|19 | |||
|20 | |||
|- | |||
|21 | |||
|22 | |||
|23 | |||
|24 | |||
|25 | |||
|26 | |||
|27 | |||
|28 | |||
|29 | |||
|30 | |||
|- | |||
|31 | |||
|32 | |||
|33 | |||
|34 | |||
|35 | |||
|36 | |||
|37 | |||
|38 | |||
|39 | |||
|40 | |||
|} | |||
=== 40 and up === | |||
41, 44, 53*, 56, 60, 61, 65, 80, 91, 111, 118 | |||
== Temperaments discussed elsewhere == | |||
Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include: | Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include: | ||
Line 35: | Line 89: | ||
** [[Landscape microtemperaments #Sextile|Sextile]] | ** [[Landscape microtemperaments #Sextile|Sextile]] | ||
** [[Stearnsmic clan #Stearnscape|Stearnscape]] | ** [[Stearnsmic clan #Stearnscape|Stearnscape]] | ||
* [[Akjaysma|Akjaysmic temperaments]] ( | * [[Akjaysma|Akjaysmic temperaments]] (1\7 period) | ||
** [[Ragismic microtemperaments #Brahmagupta|Brahmagupta]] | **[[Ragismic microtemperaments #Brahmagupta|Brahmagupta]] | ||
** [[Schismatic family #Septant|Septant]] | ** [[Schismatic family #Septant|Septant]] | ||
** [[Apotome family #Whitewood|Whitewood]] | ** [[Apotome family #Whitewood|Whitewood]] | ||
Line 61: | Line 115: | ||
* [[Cloudy clan #Pentadecal|Pentadecal]], [[Trienstonic clan #Quindecic|quindecic]] (1\15 period) | * [[Cloudy clan #Pentadecal|Pentadecal]], [[Trienstonic clan #Quindecic|quindecic]] (1\15 period) | ||
* [[Ragismic microtemperaments #Octoid|Hexadecoid]], [[Jubilismic clan #Sedecic|sedecic]] (1\16 period) | * [[Ragismic microtemperaments #Octoid|Hexadecoid]], [[Jubilismic clan #Sedecic|sedecic]] (1\16 period) | ||
* [[Ragismic microtemperaments #Chlorine|Chlorine]] ( | * [[Ragismic microtemperaments #Chlorine|Chlorine]] (1\17 period) | ||
* [[Ragismic microtemperaments #Ennealimmal|Hemiennealimmal]] (1\18 period) | * [[Ragismic microtemperaments #Ennealimmal|Hemiennealimmal]] (1\18 period) | ||
* [[Ragismic microtemperaments #Enneadecal|Enneadecal]], [[Meantone family #Meanmag|meanmag]] (1\19 period) | * [[Ragismic microtemperaments #Enneadecal|Enneadecal]], [[Meantone family #Meanmag|meanmag]] (1\19 period) | ||
* [[Hemimage temperaments #Degrees|Degrees]] ( | * [[Hemimage temperaments #Degrees|Degrees]] (1\20 period) | ||
* [[Akjayland]] ( | * [[Akjayland]] (1\21 period) | ||
* [[Porwell temperaments #Hendecatonic|Icosidillic]] ( | * [[Porwell temperaments #Hendecatonic|Icosidillic]] (1\22 period) | ||
* [[Porwell temperaments #Icositritonic|Icositritonic]] (1\23 period) | * [[Porwell temperaments #Icositritonic|Icositritonic]] (1\23 period) | ||
* [[Compton family #Hours|Hours]], [[chromium]] (1\24 period) | * [[Compton family #Hours|Hours]], [[chromium]] (1\24 period) | ||
* [[Ragismic microtemperaments #Ennealimmal|Trinealimmal]], [[Tritrizo clan #Cobalt|cobalt]] (1\27 period) | * [[Ragismic microtemperaments #Ennealimmal|Trinealimmal]], [[Tritrizo clan #Cobalt|cobalt]] (1\27 period) | ||
* [[Horwell temperaments #Oquatonic|Oquatonic]] (1\28 period) | * [[Horwell temperaments #Oquatonic|Oquatonic]] (1\28 period) | ||
* [[Hemifamity temperaments #Mystery|Mystery]], [[Copper comma|copper]] ( | * [[Hemifamity temperaments #Mystery|Mystery]], [[Copper comma|copper]] (1\29 period) | ||
* [[31st-octave temperaments|Birds]] (1\31 period) | * [[31st-octave temperaments|Birds]] (1\31 period) | ||
* [[Compton family #Decades|Decades]] (1\36 period) | * [[Compton family #Decades|Decades]] (1\36 period) | ||
* Rubidium, dzelic ( | * Rubidium, dzelic (1\37 period) | ||
* [[Ragismic microtemperaments #Enneadecal|Hemienneadecal]], [[semihemienneadecal]] (1\38 period) | * [[Ragismic microtemperaments #Enneadecal|Hemienneadecal]], [[semihemienneadecal]] (1\38 period) | ||
* [[Counterpyth family|Counterpyth temperaments]], [[niobium]] (1\41 period) | * [[Counterpyth family|Counterpyth temperaments]], [[niobium]] (1\41 period) | ||
Line 83: | Line 134: | ||
* [[Ragismic microtemperaments #Palladium|Palladium]] (1\46 period) | * [[Ragismic microtemperaments #Palladium|Palladium]] (1\46 period) | ||
* [[Mercator family|Mercator temperaments]] (1\53 period) | * [[Mercator family|Mercator temperaments]] (1\53 period) | ||
* [[Compton family #Omicronbeta|Omicronbeta]], [[The Flashmob#Hafnium|hafnium]] (1\72 period) | * [[Compton family #Omicronbeta|Omicronbeta]], [[The Flashmob#Hafnium|hafnium]] (1\72 period) | ||
* [[The Flashmob#Iridium|Iridium]] (1\77 period) | * [[The Flashmob#Iridium|Iridium]] (1\77 period) | ||
* [[Parkleiness temperaments #Octogintic|Octogintic]], | * [[Parkleiness temperaments #Octogintic|Octogintic]], (1\80 period) | ||
* [[Stearnsmic clan #Garistearn|Garistearn]] (1\94 period) | * [[Stearnsmic clan #Garistearn|Garistearn]] (1\94 period) | ||
* [[Tritrizo clan #Undecentic|Undecentic]] (1\99 period) | * [[Tritrizo clan #Undecentic|Undecentic]] (1\99 period) | ||
* [[Tritrizo clan #Schisennealimmal|Schisennealimmal]] (1\171 period) | * [[Tritrizo clan #Schisennealimmal|Schisennealimmal]] (1\171 period) | ||
* [[Tritrizo clan #Lunennealimmal|Lunennealimmal]] (1\441 period) | * [[Tritrizo clan #Lunennealimmal|Lunennealimmal]] (1\441 period) | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Lists of temperaments]] | [[Category:Lists of temperaments]] |
Revision as of 14:02, 15 June 2023
Fractional-octave temperaments, when viewed from a regular temperament theory perspective, are temperaments which have a period which corresponds to a just interval mapped to a fraction of the octave, that is one step of an EDO.
Theory
Fractional-octave temperaments are valuable with regards to polysystemicism and polychromatics. They are acoustically significant with regards to containing modes of limited transposition, as well as their ability to expand on the harmony of the equal division they are a superset of. Such temperaments are also a way of introducing less common and harmonically less performing equal divisions into music that prefers consonance and is based on regular temperament theory.
Terminology
The terminology was developed by Eliora. The equal division containing the mos scale of such a temperament, starting from the tonic, is referred to as a wireframe, and individual notes of that equal division are called hinges. Thus in this context, the wireframe is the tuning consisting of only stacks of the period and no stacks of the generator. Temperament-agnostically, this can be used to refer to any structure embedded in an (x,y)-ET which repeats y times within that period, its "wireframe" is y-ET.
The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, compton family tempers out the Pythagorean comma and maps 7 steps of 12edo to 3/2. Likewise, a lot of 10th-octave temperaments have a 13/8 as 7\10, and 26th-octave temperaments often have a 7/4 for 21\26.
Individual pages of temperaments by equal division
2 to 40
Many pages are yet to be created.
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
40 and up
41, 44, 53*, 56, 60, 61, 65, 80, 91, 111, 118
Temperaments discussed elsewhere
Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include:
- 1\2 period temperaments
- 1\3 period temperaments
- 1\4 period temperaments
- 1\5 period temperaments
- 1\6 period temperaments
- Akjaysmic temperaments (1\7 period)
- Octoid, octant (1\8 period)
- Tritrizo temperaments (1\9 period)
- Linus temperaments (1\10 period)
- Hendecatonic, undeka (1\11 period)
- Compton, atomic (1\12 period)
- Triskaidekic, tridecatonic, trideci, aluminium (1\13 period)
- Silicon (1\14 period)
- Pentadecal, quindecic (1\15 period)
- Hexadecoid, sedecic (1\16 period)
- Chlorine (1\17 period)
- Hemiennealimmal (1\18 period)
- Enneadecal, meanmag (1\19 period)
- Degrees (1\20 period)
- Akjayland (1\21 period)
- Icosidillic (1\22 period)
- Icositritonic (1\23 period)
- Hours, chromium (1\24 period)
- Trinealimmal, cobalt (1\27 period)
- Oquatonic (1\28 period)
- Mystery, copper (1\29 period)
- Birds (1\31 period)
- Decades (1\36 period)
- Rubidium, dzelic (1\37 period)
- Hemienneadecal, semihemienneadecal (1\38 period)
- Counterpyth temperaments, niobium (1\41 period)
- Meridic (1\43 period)
- Palladium (1\46 period)
- Mercator temperaments (1\53 period)
- Omicronbeta, hafnium (1\72 period)
- Iridium (1\77 period)
- Octogintic, (1\80 period)
- Garistearn (1\94 period)
- Undecentic (1\99 period)
- Schisennealimmal (1\171 period)
- Lunennealimmal (1\441 period)