Minortonic family: Difference between revisions
→Domain: do we need to resolve a name conflict? |
Name conflict has been resolved. Update keys |
||
Line 2: | Line 2: | ||
== Minortone == | == Minortone == | ||
Subgroup: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
[[Comma]]: {{monzo| -16 35 -17 }} | [[Comma list]]: {{monzo| -16 35 -17 }} | ||
[[Mapping]]: [{{val| 1 -1 -3 }}, {{val| 0 17 35 }}] | [[Mapping]]: [{{val| 1 -1 -3 }}, {{val| 0 17 35 }}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 182.466 | ||
{{Val list|legend=1| 46, 125, 171, 388, 559, 730, 1289, 2019, 2749, 4768, 16323, 21091 }} | {{Val list|legend=1| 46, 125, 171, 388, 559, 730, 1289, 2019, 2749, 4768, 16323, 21091 }} | ||
Line 19: | Line 19: | ||
However, as noted before, 32/21 is only a ragisma shy of (10/9)<sup>4</sup>, and so a 7-limit interpretation, if not quite so super-accurate, is more or less inevitable. While 559 or 730 are still fine as tunings, the error of the 7-limit is lower by a whisker in [[171edo]]. 21 generators gives a 64/7. MOS of size 20, 33, 46 or 79 notes can be used for mitonic. | However, as noted before, 32/21 is only a ragisma shy of (10/9)<sup>4</sup>, and so a 7-limit interpretation, if not quite so super-accurate, is more or less inevitable. While 559 or 730 are still fine as tunings, the error of the 7-limit is lower by a whisker in [[171edo]]. 21 generators gives a 64/7. MOS of size 20, 33, 46 or 79 notes can be used for mitonic. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 4375/4374, 2100875/2097152 | [[Comma list]]: 4375/4374, 2100875/2097152 | ||
Line 27: | Line 27: | ||
{{Multival|legend=1| 17 35 -21 16 -81 -147 }} | {{Multival|legend=1| 17 35 -21 16 -81 -147 }} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/9 = 182.458 | ||
{{Val list|legend=1| 46, 125, 171, 1927d, 2098d, …, 3637bcdd }} | {{Val list|legend=1| 46, 125, 171, 1927d, 2098d, …, 3637bcdd }} | ||
Line 42: | Line 42: | ||
Mapping: [{{val| 1 -1 -3 6 10 }}, {{val| 0 17 35 -21 -43 }}] | Mapping: [{{val| 1 -1 -3 6 10 }}, {{val| 0 17 35 -21 -43 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.482 | ||
Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | ||
Line 55: | Line 55: | ||
Mapping: [{{val| 1 -1 -3 6 10 11 }}, {{val| 0 17 35 -21 -43 -48 }}] | Mapping: [{{val| 1 -1 -3 6 10 11 }}, {{val| 0 17 35 -21 -43 -48 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.481 | ||
Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | ||
Line 68: | Line 68: | ||
Mapping: [{{val| 1 -1 -3 6 10 11 5 }}, {{val| 0 17 35 -21 -43 -48 -6 }}] | Mapping: [{{val| 1 -1 -3 6 10 11 5 }}, {{val| 0 17 35 -21 -43 -48 -6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.481 | ||
Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | Optimal GPV sequence: {{Val list| 46, 125e, 171, 217, 605ee, 822dee }} | ||
Line 83: | Line 83: | ||
Mapping: [{{val| 1 -1 -3 6 3 }}, {{val| 0 17 35 -21 3 }}] | Mapping: [{{val| 1 -1 -3 6 3 }}, {{val| 0 17 35 -21 3 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.449 | ||
Optimal GPV sequence: {{Val list| 46, 125, 171e }} | Optimal GPV sequence: {{Val list| 46, 125, 171e }} | ||
Line 96: | Line 96: | ||
Mapping: [{{val| 1 -1 -3 6 3 11 }}, {{val| 0 17 35 -21 3 -48 }}] | Mapping: [{{val| 1 -1 -3 6 3 11 }}, {{val| 0 17 35 -21 3 -48 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.470 | ||
Optimal GPV sequence: {{Val list| 46, 125, 171e, 388ee }} | Optimal GPV sequence: {{Val list| 46, 125, 171e, 388ee }} | ||
Line 109: | Line 109: | ||
Mapping: [{{val| 1 -1 -3 6 3 11 5 }}, {{val| 0 17 35 -21 3 -48 -6 }}] | Mapping: [{{val| 1 -1 -3 6 3 11 5 }}, {{val| 0 17 35 -21 3 -48 -6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.471 | ||
Optimal GPV sequence: {{Val list| 46, 125, 171e, 388ee }} | Optimal GPV sequence: {{Val list| 46, 125, 171e, 388ee }} | ||
Line 124: | Line 124: | ||
Mapping: [{{val| 1 -1 -3 6 3 4 }}, {{val| 0 17 35 -21 3 -2 }}] | Mapping: [{{val| 1 -1 -3 6 3 4 }}, {{val| 0 17 35 -21 3 -2 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.437 | ||
Optimal GPV sequence: {{Val list| 46, 79, 125f, 171ef, 296eff }} | Optimal GPV sequence: {{Val list| 46, 79, 125f, 171ef, 296eff }} | ||
Line 137: | Line 137: | ||
Mapping: [{{val| 1 -1 -3 6 3 4 5 }}, {{val| 0 17 35 -21 3 -2 -6 }}] | Mapping: [{{val| 1 -1 -3 6 3 4 5 }}, {{val| 0 17 35 -21 3 -2 -6 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.444 | ||
Optimal GPV sequence: {{Val list| 46, 125f, 171ef }} | Optimal GPV sequence: {{Val list| 46, 125f, 171ef }} | ||
Line 150: | Line 150: | ||
Mapping: [{{val| 2 -2 -6 12 13 }}, {{val| 0 17 35 -21 -20 }}] | Mapping: [{{val| 2 -2 -6 12 13 }}, {{val| 0 17 35 -21 -20 }}] | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.457 | ||
Optimal GPV sequence: {{Val list| 46, 204c, 250, 296, 342 }} | Optimal GPV sequence: {{Val list| 46, 204c, 250, 296, 342 }} | ||
Line 157: | Line 157: | ||
== Domain == | == Domain == | ||
{{See also| Landscape microtemperaments #Domain }} | |||
Domain | ''Domain'' adds the [[landscape comma]], 250047/250000, to the minortone comma, giving a temperament which is perhaps most notable for its inclusion of the remarkable subgroup temperament [[Chromatic pairs #Terrain|terrain]]. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 250047/250000, 645700815/645657712 | [[Comma list]]: 250047/250000, 645700815/645657712 | ||
Line 167: | Line 167: | ||
[[Mapping]]: [{{val| 3 -3 -9 -8 }}, {{val| 0 17 35 36 }}] | [[Mapping]]: [{{val| 3 -3 -9 -8 }}, {{val| 0 17 35 36 }}] | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~63/50 = 1\3, ~10/9 = 182.467 | ||
{{Val list|legend=1| 171, 1164, 1335, 1506, 1677, 1848, 2019, 11943, 13962, 15981, 18000, 20019, 22038 }} | {{Val list|legend=1| 171, 1164, 1335, 1506, 1677, 1848, 2019, 11943, 13962, 15981, 18000, 20019, 22038 }} |
Revision as of 03:14, 8 January 2023
The minortonic family tempers out the minortone comma (also known as "minortonma"), [-16 35 -17⟩. The head of this family is five-limit minortone temperament, with generator a minor tone.
Minortone
Subgroup: 2.3.5
Comma list: [-16 35 -17⟩
Mapping: [⟨1 -1 -3], ⟨0 17 35]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.466
Badness: 0.029765
Mitonic
As a 5-limit temperament, mitonic becomes minortonic, a super-accurate microtemperament tempering out the minortone comma, [-16 35 -17⟩. Flipping that gives the 5-limit wedgie ⟨⟨ 17 35 16 ]], which tells us that 10/9 can be taken as the generator, with 17 of them giving a 6, 18 of them a 20/3, and 35 of them giving a 40. The generator should be tuned about 1/16 of a cent flat, with 61/17 being 0.06423 cents flat and 401/35 being 0.06234 cents flat. 171, 559 and 730 are possible equal temperament tunings.
However, as noted before, 32/21 is only a ragisma shy of (10/9)4, and so a 7-limit interpretation, if not quite so super-accurate, is more or less inevitable. While 559 or 730 are still fine as tunings, the error of the 7-limit is lower by a whisker in 171edo. 21 generators gives a 64/7. MOS of size 20, 33, 46 or 79 notes can be used for mitonic.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 2100875/2097152
Mapping: [⟨1 -1 -3 6], ⟨0 17 35 -21]]
Wedgie: ⟨⟨ 17 35 -21 16 -81 -147 ]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.458
Badness: 0.025184
Mineral
Extending mitonic to the 11-limit is not so simple. There are two mappings that are comparable in complexity and error: mineral (46&171) and ore (46&125). The mineral temperament tempers out 441/440 and 16384/16335 in the 11-limit. In the 17-limit, both mineral and ore temper out 833/832, 1225/1224, 1701/1700, and 4096/4095 (2.3.5.7.13.17 commas). The word "mineral" is related to "mine" (an excavation from which ore or solid minerals are taken) and "miner" (a person who works in a mine, also as a pun on "minor").
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4375/4374, 16384/16335
Mapping: [⟨1 -1 -3 6 10], ⟨0 17 35 -21 -43]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.482
Optimal GPV sequence: Template:Val list
Badness: 0.059060
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 3584/3575, 4375/4374
Mapping: [⟨1 -1 -3 6 10 11], ⟨0 17 35 -21 -43 -48]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.481
Optimal GPV sequence: Template:Val list
Badness: 0.033140
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 1156/1155, 3584/3575
Mapping: [⟨1 -1 -3 6 10 11 5], ⟨0 17 35 -21 -43 -48 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.481
Optimal GPV sequence: Template:Val list
Badness: 0.019792
Ore
The ore temperament tempers out 385/384 and 1331/1323 in the 11-limit, and maps 11/8 to three generators.
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1331/1323, 4375/4374
Mapping: [⟨1 -1 -3 6 3], ⟨0 17 35 -21 3]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.449
Optimal GPV sequence: Template:Val list
Badness: 0.053662
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 385/384, 1331/1323, 3267/3250
Mapping: [⟨1 -1 -3 6 3 11], ⟨0 17 35 -21 3 -48]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.470
Optimal GPV sequence: Template:Val list
Badness: 0.046170
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 352/351, 385/384, 561/560, 715/714, 1452/1445
Mapping: [⟨1 -1 -3 6 3 11 5], ⟨0 17 35 -21 3 -48 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.471
Optimal GPV sequence: Template:Val list
Badness: 0.028423
Goldmine
The goldmine temperament (46&79) is another 13-limit extension of ore, equating 13/12 with 14/13 and 16/13 with two 10/9s.
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 325/324, 385/384, 1331/1323
Mapping: [⟨1 -1 -3 6 3 4], ⟨0 17 35 -21 3 -2]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.437
Optimal GPV sequence: Template:Val list
Badness: 0.039302
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 169/168, 273/272, 325/324, 385/384, 1331/1323
Mapping: [⟨1 -1 -3 6 3 4 5], ⟨0 17 35 -21 3 -2 -6]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.444
Optimal GPV sequence: Template:Val list
Badness: 0.027440
Seminar
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 2100875/2097152
Mapping: [⟨2 -2 -6 12 13], ⟨0 17 35 -21 -20]]
Optimal tuning (POTE): ~2 = 1\1, ~10/9 = 182.457
Optimal GPV sequence: Template:Val list
Badness: 0.026808
Domain
Domain adds the landscape comma, 250047/250000, to the minortone comma, giving a temperament which is perhaps most notable for its inclusion of the remarkable subgroup temperament terrain.
Subgroup: 2.3.5.7
Comma list: 250047/250000, 645700815/645657712
Mapping: [⟨3 -3 -9 -8], ⟨0 17 35 36]]
Optimal tuning (POTE): ~63/50 = 1\3, ~10/9 = 182.467
Badness: 0.013979