328edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Expand theory
Cleanup; clarify the title row of the rank-2 temp table; -redundant categories
Line 3: Line 3:


== Theory ==
== Theory ==
328edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[164edo]], but the approximation of higher harmonics are much improved. It has a sharp tendency, with [[harmonic]]s 3 through 17 all tuned sharp. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  
328edo is [[enfactoring|enfactored]] in the [[5-limit]], with the same tuning as [[164edo]], but the approximation of higher [[harmonic]]s are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|328|intervals=prime|columns=11}}
{{Harmonics in equal|328|intervals=prime|columns=11}}


=== Divisors ===
=== Subsets and supersets ===
Since 328 factors into 2<sup>3</sup> × 41, it has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}.  
Since 328 factors into 2<sup>3</sup> × 41, 328edo has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}.  


== Regular temperament properties ==
== Regular temperament properties ==
Line 24: Line 24:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 3136/3125, 589824/588245
| 2401/2400, 3136/3125, 589824/588245
| [{{val| 328 520 762 921 }}]
| {{mapping| 328 520 762 921 }}
| -0.298
| -0.298
| 0.229
| 0.229
Line 31: Line 31:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| [{{val| 328 520 762 921 1135 }}]
| {{mapping| 328 520 762 921 1135 }}
| -0.303
| -0.303
| 0.205
| 0.205
Line 38: Line 38:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| [{{val| 328 520 762 921 1135 1214 }}]
| {{mapping| 328 520 762 921 1135 1214 }}
| -0.295
| -0.295
| 0.188
| 0.188
Line 45: Line 45:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| [{{val| 328 520 762 921 1135 1214 1341 }}]
| {{mapping| 328 520 762 921 1135 1214 1341 }}
| -0.293
| -0.293
| 0.174
| 0.174
Line 57: Line 57:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 98: Line 98:
| [[Hemicountercomp]]
| [[Hemicountercomp]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Hemiwürschmidt]]
[[Category:Hemiwürschmidt]]
[[Category:Semiporwell]]
[[Category:Semiporwell]]

Revision as of 08:15, 22 January 2024

← 327edo 328edo 329edo →
Prime factorization 23 × 41
Step size 3.65854 ¢ 
Fifth 192\328 (702.439 ¢) (→ 24\41)
Semitones (A1:m2) 32:24 (117.1 ¢ : 87.8 ¢)
Consistency limit 13
Distinct consistency limit 13

Template:EDO intro

Theory

328edo is enfactored in the 5-limit, with the same tuning as 164edo, but the approximation of higher harmonics are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament tempers out 2401/2400, 3136/3125, and 6144/6125 in the 7-limit, 9801/9800, 16384/16335 and 19712/19683 in the 11-limit, 676/675, 1001/1000, 1716/1715 and 2080/2079 in the 13-limit, 936/935, 1156/1155 and 2601/2600 in the 17-limit, so that it supports würschmidt and hemiwürschmidt, and provides the optimal patent val for 7-limit hemiwürschmidt, 11- and 13-limit semihemiwür, and 13-limit semiporwell.

Prime harmonics

Approximation of prime harmonics in 328edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.48 +1.49 +0.69 +1.12 +0.94 +1.14 -1.17 +0.99 -1.53 +0.09
Relative (%) +0.0 +13.2 +40.8 +18.8 +30.6 +25.6 +31.2 -32.0 +27.2 -41.8 +2.4
Steps
(reduced)
328
(0)
520
(192)
762
(106)
921
(265)
1135
(151)
1214
(230)
1341
(29)
1393
(81)
1484
(172)
1593
(281)
1625
(313)

Subsets and supersets

Since 328 factors into 23 × 41, 328edo has subset edos 2, 4, 8, 41, 82, and 164.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5.7 2401/2400, 3136/3125, 589824/588245 [328 520 762 921]] -0.298 0.229 6.27
2.3.5.7.11 2401/2400, 3136/3125, 9801/9800, 19712/19683 [328 520 762 921 1135]] -0.303 0.205 5.61
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647 [328 520 762 921 1135 1214]] -0.295 0.188 5.15
2.3.5.7.11.13.17 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125 [328 520 762 921 1135 1214 1341]] -0.293 0.174 4.77

Rank-2 temperaments

Note: 5-limit temperaments supported by 164et are not listed.

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 53\328 193.90 28/25 Hemiwürschmidt
1 117\328 428.05 2800/2187 Osiris
2 17\328 62.20 28/27 Eagle
2 111\328
(53\328)
406.10
(193.90)
495/392
(28/25)
Semihemiwürschmidt
8 136\328
(13\328)
497.56
(47.56)
4/3
(36/35)
Twilight
41 49\328
(1\328)
179.27
(3.66)
567/512
(352/351)
Hemicountercomp

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct