Gariboh family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
The '''gariboh family''' of [[planar temperament]]s tempers out the gariboh comma, [[3125/3087]].  
{{Technical data page}}
The '''gariboh family''' of [[Rank-3 temperament|rank-3]] [[temperament]]s [[Tempering out|tempers out]] the gariboh comma, [[3125/3087]].  


== Gariboh ==
== Gariboh ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: [[3125/3087]]
[[Comma list]]: [[3125/3087]]


[[Mapping]]: [{{val| 1 0 0 0 }}, {{val| 0 1 1 1 }}, {{val| 0 0 3 5 }}]
{{Mapping|legend=1| 1 0 0 0 | 0 1 1 1 | 0 0 3 5 }}


Mapping generators: ~2, ~3, ~25/21
: Mapping generators: ~2, ~3, ~25/21


{{Val list|legend=1| 8d, 12, 29, 37, 41, 53, 94 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3 = 702.4482, ~25/21 = 293.7397
 
{{Optimal ET sequence|legend=1| 8d, 12, 29, 37, 41, 53, 94 }}
 
[[Badness]]: 0.614 × 10<sup>-3</sup>


[[Projection pair]]s: 5 – 15625/3087, 7 – 9765625/1361367 to 2.3.25/7
[[Projection pair]]s: 5 – 15625/3087, 7 – 9765625/1361367 to 2.3.25/7


== Undecimal gariboh ==
== Undecimal gariboh ==
Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 540/539, 3125/3087
[[Comma list]]: 540/539, 3125/3087


[[Mapping]]: [{{val| 1 0 0 0 2 }}, {{val| 0 1 1 1 2 }}, {{val| 0 0 3 5 -7 }}]
{{Mapping|legend=1| 1 0 0 0 2 | 0 1 1 1 2 | 0 0 3 5 -7 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3 = 702.7001, ~25/21 = 293.5587
 
{{Optimal ET sequence|legend=1| 8d, 12e, 25bccdd, 33cd, 37ee, 41, 53, 94, 229c }}
 
[[Badness]]: 1.75 × 10<sup>-3</sup>
 
=== 13-limit ===
[[Subgroup]]: 2.3.5.7.11.13
 
[[Comma list]]: 275/273, 325/324, 540/539
 
{{Mapping|legend=1| 1 0 0 0 2 2 | 0 1 1 1 2 2 | 0 0 3 5 -7 -6 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3 = 702.5381, ~13/11 = 293.6878


{{Val list|legend=1| 8d, 12e, 25bccdd, 33cd, 37ee, 41, 53, 94, 229c }}
{{Optimal ET sequence|legend=1| 8d, 12e, 33cd, 41, 53, 94 }}


== Androboh ==
== Androboh ==
Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 100/99, 1375/1372
[[Comma list]]: 100/99, 1375/1372


[[Mapping]]: [{{val| 1 0 0 0 2 }}, {{val| 0 1 1 1 0 }}, {{val| 0 0 3 5 6 }}]
{{Mapping|legend=1| 1 0 0 0 2 | 0 1 1 1 0 | 0 0 3 5 6 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3 = 705.0554, ~25/21 = 293.1102


{{Val list|legend=1| 8d, 12, 29, 37, 41, 90e, 131e }} *
{{Optimal ET sequence|legend=1| 8d, 12, 29, 37, 41, 90e, 131e }} *


<nowiki>*</nowiki> [[optimal patent val]]: [[119edo|119]]
<nowiki>*</nowiki> [[optimal patent val]]: [[119edo|119]]


[[Category:Regular temperament theory]]
[[Badness]]: 1.20 × 10<sup>-3</sup>
 
== Trismegiboh ==
[[Subgroup]]: 2.3.5.7.11
 
[[Comma list]]: 3025/3024, 3125/3087
 
{{Mapping|legend=1| 1 0 0 0 2 | 0 1 1 1 1 | 0 0 6 10 -1 }}
 
: Mapping generators: ~2, ~3, ~12/11
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.5559, ~12/11 = 147.0103
 
{{Optimal ET sequence|legend=1| 8d, 16, 33cd, 41, 49 }}
 
=== 13-limit ===
[[Subgroup]]: 2.3.5.7.11.13
 
[[Comma list]]: 144/143, 275/273, 847/845
 
{{Mapping|legend=1| 1 0 0 0 2 2 | 0 1 1 1 1 1 | 0 0 6 10 -1 1 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 702.9404, ~12/11 = 147.1132
 
{{Optimal ET sequence|legend=1| 8d, 16, 33cd, 41, 49f }}
 
=== 17-limit ===
[[Subgroup]]: 2.3.5.7.11.13.17
 
[[Comma list]]: 120/119, 144/143, 170/169, 847/845
 
{{Mapping|legend=1| 1 0 0 0 2 2 3 | 0 1 1 1 1 1 1 | 0 0 6 10 -1 1 -4 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 703.0799, ~12/11 = 147.2446
 
{{Optimal ET sequence|legend=1| 8d, 16, 33cd, 41, 49fg }}
 
[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Gariboh family| ]] <!-- main article -->
[[Category:Gariboh family| ]] <!-- main article -->
[[Category:Gariboh| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]

Latest revision as of 00:34, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The gariboh family of rank-3 temperaments tempers out the gariboh comma, 3125/3087.

Gariboh

Subgroup: 2.3.5.7

Comma list: 3125/3087

Mapping[1 0 0 0], 0 1 1 1], 0 0 3 5]]

Mapping generators: ~2, ~3, ~25/21

Optimal tuning (POTE): ~2 = 1\1, ~3 = 702.4482, ~25/21 = 293.7397

Optimal ET sequence8d, 12, 29, 37, 41, 53, 94

Badness: 0.614 × 10-3

Projection pairs: 5 – 15625/3087, 7 – 9765625/1361367 to 2.3.25/7

Undecimal gariboh

Subgroup: 2.3.5.7.11

Comma list: 540/539, 3125/3087

Mapping[1 0 0 0 2], 0 1 1 1 2], 0 0 3 5 -7]]

Optimal tuning (POTE): ~2 = 1\1, ~3 = 702.7001, ~25/21 = 293.5587

Optimal ET sequence8d, 12e, 25bccdd, 33cd, 37ee, 41, 53, 94, 229c

Badness: 1.75 × 10-3

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 275/273, 325/324, 540/539

Mapping[1 0 0 0 2 2], 0 1 1 1 2 2], 0 0 3 5 -7 -6]]

Optimal tuning (POTE): ~2 = 1\1, ~3 = 702.5381, ~13/11 = 293.6878

Optimal ET sequence8d, 12e, 33cd, 41, 53, 94

Androboh

Subgroup: 2.3.5.7.11

Comma list: 100/99, 1375/1372

Mapping[1 0 0 0 2], 0 1 1 1 0], 0 0 3 5 6]]

Optimal tuning (POTE): ~2 = 1\1, ~3 = 705.0554, ~25/21 = 293.1102

Optimal ET sequence8d, 12, 29, 37, 41, 90e, 131e *

* optimal patent val: 119

Badness: 1.20 × 10-3

Trismegiboh

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 3125/3087

Mapping[1 0 0 0 2], 0 1 1 1 1], 0 0 6 10 -1]]

Mapping generators: ~2, ~3, ~12/11

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.5559, ~12/11 = 147.0103

Optimal ET sequence8d, 16, 33cd, 41, 49

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 275/273, 847/845

Mapping[1 0 0 0 2 2], 0 1 1 1 1 1], 0 0 6 10 -1 1]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.9404, ~12/11 = 147.1132

Optimal ET sequence8d, 16, 33cd, 41, 49f

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 120/119, 144/143, 170/169, 847/845

Mapping[1 0 0 0 2 2 3], 0 1 1 1 1 1 1], 0 0 6 10 -1 1 -4]]

Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 703.0799, ~12/11 = 147.2446

Optimal ET sequence8d, 16, 33cd, 41, 49fg