Wikispaces>Andrew_Heathwaite |
|
(38 intermediate revisions by 12 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{ED intro}} It is also known as the '''Triple Bohlen–Pierce scale''' ('''Triple BP'''), since it divides each step of the equal-tempered [[Bohlen–Pierce]] scale ([[13edt]]) into three equal parts. |
| : This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-11-19 20:02:43 UTC</tt>.<br>
| |
| : The original revision id was <tt>277286364</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each, a [[nonoctave]] tuning corresponding to 24.606 edo. It is a strong no-twos 13-limit system, a fact first noted by [[Paul Erlich]], and like [[26edt]] and [[52edt]] it is a multiple of [[13edt]] and so contains the [[Bohlen-Pierce]] scale. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out 1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [<1 0 0 0 0 0|, <0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth [[The Riemann Zeta Function and Tuning#Removing%20primes|no-twos zeta peak edt]].
| |
|
| |
|
| ==Intervals of 39EDT==
| | 39edt can be described as approximately 24.606[[edo]]. This implies that each step of 39edt can be approximated by 5 steps of [[123edo]]. 39edt contains within it a close approximation of [[4ed11/5]]: every seventh step of 39edt equates to a step of 4ed11/5. |
|
| |
|
| ||~ Degrees of 39EDT ||~ Cents Value ||~ ¢ Octave-Reduced ||~ Degrees of [[BP]] ||~ Comments ||
| | == Theory == |
| || 0 || 0.000 || || 0 || 1/1 ||
| | It is a strong no-twos 13-limit system, a fact first noted by [[Paul Erlich]]; in fact it has a better no-twos 13-[[odd limit]] relative error than any other edt up to [[914edt]]. Like [[26edt]] and [[52edt]], it is a multiple of 13edt and so contains the Bohlen-Pierce scale, being [[contorted]] in the no-twos 7-limit, tempering out the same BP commas, [[245/243]] and [[3125/3087]], as 13edt. In the [[11-limit]] it tempers out [[1331/1323]] and in the [[13-limit]] [[275/273]], [[1575/1573]], and [[847/845]]. An efficient traversal is therefore given by [[Mintra]] temperament, which in the 13-limit tempers out 275/273 and 1331/1323 alongside 245/243, and is generated by the interval of [[11/7]], which serves as a [[macrodiatonic]] "superpyth" fourth and splits the [[BPS]] generator of [[9/7]], up a tritave, in three. |
| || 1 || 48.768 || || || 39th root of 3 ||
| |
| || 2 || 97.536 || || || ||
| |
| || 3 || 146.304 || || 1 || 13th root of 3 ||
| |
| || 4 || 195.072 || || || ||
| |
| || 5 || 243.840 || || || ||
| |
| || 6 || 292.608 || || 2 || ||
| |
| || 7 || 341.377 || || || ||
| |
| || 8 || 390.145 || || || ||
| |
| || 9 || 438.913 || || 3 || ||
| |
| || 10 || 487.681 || || || ||
| |
| || 11 || 536.449 || || || ||
| |
| || 12 || 585.217 || || 4 || ||
| |
| || 13 || 633.985 || || || ||
| |
| || 14 || 682.753 || || || ||
| |
| || 15 || 731.521 || || 5 || ||
| |
| || 16 || 780.289 || || || ||
| |
| || 17 || 829.057 || || || ||
| |
| || 18 || 877.825 || || 6 || ||
| |
| || 19 || 926.593 || || || ||
| |
| || 20 || 975.362 || || || ||
| |
| || 21 || 1024.130 || || 7 || ||
| |
| || 22 || 1072.898 || || || ||
| |
| || 23 || 1121.666 || || || ||
| |
| || 24 || 1170.434 || || 8 || ||
| |
| || 25 || 1219.202 || 19.202 || || ||
| |
| || 26 || 1267.970 || 67.970 || || ||
| |
| || 27 || 1316.738 || 116.738 || 9 || ||
| |
| || 28 || 1365.506 || 165.506 || || ||
| |
| || 29 || 1414.274 || 214.274 || || ||
| |
| || 30 || 1463.042 || 263.042 || 10 || ||
| |
| || 31 || 1511.810 || 311.810 || || ||
| |
| || 32 || 1560.578 || 360.578 || || ||
| |
| || 33 || 1609.347 || 409.347 || 11 || ||
| |
| || 34 || 1658.115 || 458.115 || || ||
| |
| || 35 || 1706.883 || 506.883 || || ||
| |
| || 36 || 1755.651 || 555.651 || 12 || ||
| |
| || 37 || 1804.419 || 604.419 || || ||
| |
| || 38 || 1853.187 || 653.187 || || ||
| |
| || 39 || 1901.955 || 701.955 || 13 || 3/1 (tritave) ||
| |
| || 40 || 1950.723 || 750.723 || || ||
| |
| || 41 || 1999.491 || 799.491 || || ||
| |
| || 42 || 2048.259 || 848.259 || 14 || ||
| |
| || 43 || 2097.027 || 897.027 || || ||
| |
| || 44 || 2145.795 || 945.795 || || ||
| |
| || 45 || 2194.563 || 994.563 || 15 || ||
| |
| || 46 || 2243.332 || 1043.332 || || ||
| |
| || 47 || 2292.100 || 1092.100 || || ||
| |
| || 48 || 2340.868 || 1140.868 || 16 || ||
| |
| || 49 || 2389.636 || 1189.636 || || ||
| |
| || 50 || 2438.404 || 38.404 || || ||
| |
| || 51 || 2487.172 || 87.172 || 17 || ||
| |
| || 52 || 2535.940 || 135.940 || || ||
| |
| || 53 || 2584.708 || 184.708 || || ||
| |
| || 54 || 2633.476 || 233.476 || 18 || ||
| |
| || 55 || 2682.244 || 282.244 || || ||
| |
| || 56 || 2731.012 || 331.012 || || ||
| |
| || 57 || 2779.780 || 379.780 || 19 || ||
| |
| || 58 || 2828.548 || 428.548 || || ||
| |
| || 59 || 2877.317 || 477.317 || || ||
| |
| || 60 || 2926.085 || 526.085 || 20 || ||
| |
| || 61 || 2974.853 || 574.853 || || ||
| |
| || 62 || 3023.621 || 623.621 || || ||
| |
| || 63 || 3072.389 || 672.389 || 21 || ||
| |
| || 64 || 3121.157 || 721.157 || || ||
| |
| || 65 || 3169.925 || 769.925 || || ||
| |
| || 66 || 3218.693 || 818.693 || 22 || ||
| |
| || 67 || 3267.461 || 867.461 || || ||
| |
| || 68 || 3316.229 || 916.229 || || ||
| |
| || 69 || 3364.997 || 964.997 || 23 || ||
| |
| || 70 || 3413.765 || 1013.765 || || ||
| |
| || 71 || 3462.533 || 1062.533 || || ||
| |
| || 72 || 3511.302 || 1111.302 || 24 || ||
| |
| || 73 || 3560.070 || 1160.070 || || ||
| |
| || 74 || 3608.838 || 8.838 || || ||
| |
| || 75 || 3657.606 || 57.606 || 25 || ||
| |
| || 76 || 3706.374 || 106.374 || || ||
| |
| || 77 || 3755.142 || 155.142 || || ||
| |
| || 78 || 3803.910 || 203.910 || 26 || 9/1 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>39edt</title></head><body>The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each, a <a class="wiki_link" href="/nonoctave">nonoctave</a> tuning corresponding to 24.606 edo. It is a strong no-twos 13-limit system, a fact first noted by <a class="wiki_link" href="/Paul%20Erlich">Paul Erlich</a>, and like <a class="wiki_link" href="/26edt">26edt</a> and <a class="wiki_link" href="/52edt">52edt</a> it is a multiple of <a class="wiki_link" href="/13edt">13edt</a> and so contains the <a class="wiki_link" href="/Bohlen-Pierce">Bohlen-Pierce</a> scale. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out 1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&amp;172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [&lt;1 0 0 0 0 0|, &lt;0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing%20primes">no-twos zeta peak edt</a>.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals of 39EDT"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals of 39EDT</h2>
| |
| <br />
| |
|
| |
|
| | If octaves are inserted, 39edt is related to the {{nowrap|49f & 172f}} temperament in the full 13-limit, known as [[Sensamagic clan#Triboh|triboh]], tempering out 245/243, 275/273, 847/845 and 1575/1573, which has mapping [{{val|1 0 0 0 0 0}}, {{val|0 39 57 69 85 91}}]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth [[The Riemann zeta function and tuning#Removing primes|no-twos zeta peak edt]]. |
|
| |
|
| <table class="wiki_table">
| | When treated as an octave-repeating tuning with the sharp octave of 25 steps (about 1219 cents), and the other primes chosen by their best octave-reduced mappings, it functions as a tuning of [[mavila]] temperament, analogous to [[25edo]]'s mavila. |
| <tr>
| |
| <th>Degrees of 39EDT<br />
| |
| </th>
| |
| <th>Cents Value<br />
| |
| </th>
| |
| <th>¢ Octave-Reduced<br />
| |
| </th>
| |
| <th>Degrees of <a class="wiki_link" href="/BP">BP</a><br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0.000<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>48.768<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>39th root of 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>97.536<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>146.304<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>13th root of 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>195.072<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>243.840<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>292.608<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>341.377<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>390.145<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>438.913<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>487.681<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>536.449<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>585.217<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>633.985<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>682.753<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>731.521<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>780.289<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>829.057<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>877.825<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>926.593<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>975.362<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>1024.130<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>1072.898<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>1121.666<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>1170.434<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>1219.202<br />
| |
| </td>
| |
| <td>19.202<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>1267.970<br />
| |
| </td>
| |
| <td>67.970<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>1316.738<br />
| |
| </td>
| |
| <td>116.738<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>1365.506<br />
| |
| </td>
| |
| <td>165.506<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>1414.274<br />
| |
| </td>
| |
| <td>214.274<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>1463.042<br />
| |
| </td>
| |
| <td>263.042<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>1511.810<br />
| |
| </td>
| |
| <td>311.810<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>1560.578<br />
| |
| </td>
| |
| <td>360.578<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>1609.347<br />
| |
| </td>
| |
| <td>409.347<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>1658.115<br />
| |
| </td>
| |
| <td>458.115<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>1706.883<br />
| |
| </td>
| |
| <td>506.883<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>1755.651<br />
| |
| </td>
| |
| <td>555.651<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>1804.419<br />
| |
| </td>
| |
| <td>604.419<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>1853.187<br />
| |
| </td>
| |
| <td>653.187<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>1901.955<br />
| |
| </td>
| |
| <td>701.955<br />
| |
| </td>
| |
| <td>13<br />
| |
| </td>
| |
| <td>3/1 (tritave)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>1950.723<br />
| |
| </td>
| |
| <td>750.723<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>1999.491<br />
| |
| </td>
| |
| <td>799.491<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>2048.259<br />
| |
| </td>
| |
| <td>848.259<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>2097.027<br />
| |
| </td>
| |
| <td>897.027<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>2145.795<br />
| |
| </td>
| |
| <td>945.795<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>2194.563<br />
| |
| </td>
| |
| <td>994.563<br />
| |
| </td>
| |
| <td>15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>2243.332<br />
| |
| </td>
| |
| <td>1043.332<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>2292.100<br />
| |
| </td>
| |
| <td>1092.100<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>2340.868<br />
| |
| </td>
| |
| <td>1140.868<br />
| |
| </td>
| |
| <td>16<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>2389.636<br />
| |
| </td>
| |
| <td>1189.636<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>2438.404<br />
| |
| </td>
| |
| <td>38.404<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>2487.172<br />
| |
| </td>
| |
| <td>87.172<br />
| |
| </td>
| |
| <td>17<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>2535.940<br />
| |
| </td>
| |
| <td>135.940<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>2584.708<br />
| |
| </td>
| |
| <td>184.708<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>2633.476<br />
| |
| </td>
| |
| <td>233.476<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>2682.244<br />
| |
| </td>
| |
| <td>282.244<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>2731.012<br />
| |
| </td>
| |
| <td>331.012<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>2779.780<br />
| |
| </td>
| |
| <td>379.780<br />
| |
| </td>
| |
| <td>19<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>2828.548<br />
| |
| </td>
| |
| <td>428.548<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>2877.317<br />
| |
| </td>
| |
| <td>477.317<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>2926.085<br />
| |
| </td>
| |
| <td>526.085<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>2974.853<br />
| |
| </td>
| |
| <td>574.853<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>3023.621<br />
| |
| </td>
| |
| <td>623.621<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>3072.389<br />
| |
| </td>
| |
| <td>672.389<br />
| |
| </td>
| |
| <td>21<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>3121.157<br />
| |
| </td>
| |
| <td>721.157<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>3169.925<br />
| |
| </td>
| |
| <td>769.925<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>3218.693<br />
| |
| </td>
| |
| <td>818.693<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>3267.461<br />
| |
| </td>
| |
| <td>867.461<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>3316.229<br />
| |
| </td>
| |
| <td>916.229<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>3364.997<br />
| |
| </td>
| |
| <td>964.997<br />
| |
| </td>
| |
| <td>23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>3413.765<br />
| |
| </td>
| |
| <td>1013.765<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>3462.533<br />
| |
| </td>
| |
| <td>1062.533<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>3511.302<br />
| |
| </td>
| |
| <td>1111.302<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>3560.070<br />
| |
| </td>
| |
| <td>1160.070<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>74<br />
| |
| </td>
| |
| <td>3608.838<br />
| |
| </td>
| |
| <td>8.838<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>3657.606<br />
| |
| </td>
| |
| <td>57.606<br />
| |
| </td>
| |
| <td>25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>76<br />
| |
| </td>
| |
| <td>3706.374<br />
| |
| </td>
| |
| <td>106.374<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>3755.142<br />
| |
| </td>
| |
| <td>155.142<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>3803.910<br />
| |
| </td>
| |
| <td>203.910<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| <td>9/1<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | Mavila is one of the few places where octave-stretching makes sense, due to how flat the fifth and often the major third are; this fifth of 683 cents is much more recognizable as a perfect fifth of 3/2 than the 672-cent tuning with just octaves. |
| | {{Harmonics in equal|39|3|1|intervals=prime|columns=12}} |
| | |
| | == Intervals == |
| | All intervals shown are within the 91-[[odd limit#Nonoctave equaves|throdd limit]] and are consistently represented. |
| | |
| | {| class="wikitable center-all right-2 right-3" |
| | |- |
| | ! Steps |
| | ! [[Cent]]s |
| | ! [[Hekt]]s |
| | ! [[4L 5s (3/1-equivalent)|Enneatonic]]<br />degree |
| | ! Corresponding 3.5.7.11.13 subgroup<br />intervals |
| | ! [[Lambda ups and downs notation|Lambda]]<br />(sLsLsLsLs,<br />{{nowrap|J {{=}} 1/1}}) |
| | ! Mintaka[7]<br />(E macro-Phrygian) |
| | |- |
| | | 0 |
| | | 0 |
| | | 0 |
| | | P1 |
| | | [[1/1]] |
| | | J |
| | | E |
| | |- |
| | | 1 |
| | | 48.8 |
| | | 33.3 |
| | | SP1 |
| | | [[77/75]] (+3.2¢); [[65/63]] (−5.3¢) |
| | | ^J |
| | | ^E, vF |
| | |- |
| | | 2 |
| | | 97.5 |
| | | 66.7 |
| | | sA1/sm2 |
| | | [[35/33]] (−4.3¢); [[81/77]] (+9.9¢) |
| | | vK |
| | | F |
| | |- |
| | | 3 |
| | | 146.3 |
| | | 100 |
| | | A1/m2 |
| | | [[99/91]] (+0.4¢); [[49/45]] (−1.1¢); [[27/25]] (+13.1¢) |
| | | K |
| | | ^F, vGb, Dx |
| | |- |
| | | 4 |
| | | 195.1 |
| | | 133.3 |
| | | SA1/Sm2 |
| | | [[55/49]] (−4.9¢); [[91/81]] (−6.5¢); [[39/35]] (+7.7¢) |
| | | ^K |
| | | Gb, vE# |
| | |- |
| | | 5 |
| | | 243.8 |
| | | 166.7 |
| | | sM2/sd3 |
| | | [[15/13]] (−3.9¢); [[63/55]] (+8.7¢) |
| | | vK#, vLb |
| | | ^Gb, E# |
| | |- |
| | | 6 |
| | | 292.6 |
| | | 200 |
| | | M2/d3 |
| | | [[77/65]] (−0.7¢); [[13/11]] (+3.4¢); [[25/21]] (−9.2¢) |
| | | K#, Lb |
| | | vF#, ^E# |
| | |- |
| | | 7 |
| | | 341.4 |
| | | 233.3 |
| | | SM2/Sd3 |
| | | [[11/9]] (−6.0¢); [[91/75]] (+6.6¢) |
| | | ^K#, ^Lb |
| | | F# |
| | |- |
| | | 8 |
| | | 390.1 |
| | | 266.7 |
| | | sA2/sP3/sd4 |
| | | [[49/39]] (−5.0¢); [[81/65]] (+9.2¢) |
| | | vL |
| | | vG, ^F# |
| | |- |
| | | 9 |
| | | 438.9 |
| | | 300 |
| | | A2/P3/d4 |
| | | [[9/7]] (+3.8¢); [[35/27]] (−10.3¢) |
| | | L |
| | | G |
| | |- |
| | | 10 |
| | | 487.7 |
| | | 333.3 |
| | | SA2/SP3/Sd4 |
| | | [[65/49]] (−1.5¢); [[33/25]] (+7.0¢) |
| | | ^L |
| | | ^G, vAb |
| | |- |
| | | 11 |
| | | 536.4 |
| | | 366.7 |
| | | sA3/sm4/sd5 |
| | | [[15/11]] (−0.5¢) |
| | | vM |
| | | Ab |
| | |- |
| | | 12 |
| | | 585.2 |
| | | 400 |
| | | A3/m4/d5 |
| | | [[7/5]] (+2.7¢) |
| | | M |
| | | ^Ab, Fx |
| | |- |
| | | 13 |
| | | 634.0 |
| | | 433.3 |
| | | SA3/Sm4/Sd5 |
| | | [[13/9]] (−2.6¢) |
| | | ^M |
| | | vG# |
| | |- |
| | | 14 |
| | | 682.7 |
| | | 466.7 |
| | | sM4/sm5 |
| | | [[135/91]] (+0.07¢); [[49/33]] (−1.6¢); [[81/55]] (+12.6¢) |
| | | vM#, vNb |
| | | G# |
| | |- |
| | | 15 |
| | | 731.5 |
| | | 500 |
| | | M4/m5 |
| | | [[75/49]] (−5.4¢); [[117/77]] (+7.2¢) |
| | | M#, Nb |
| | | vA, ^G# |
| | |- |
| | | 16 |
| | | 780.3 |
| | | 533.3 |
| | | SM4/Sm5 |
| | | [[11/7]] (−2.2¢); [[39/25]] (+10.4¢) |
| | | ^M#, ^Nb |
| | | A |
| | |- |
| | | 17 |
| | | 829.0 |
| | | 566.7 |
| | | sA4/sM5 |
| | | [[21/13]] (−1.2¢) |
| | | vN |
| | | ^A, vBb |
| | |- |
| | | 18 |
| | | 877.8 |
| | | 600 |
| | | A4/M5 |
| | | [[91/55]] (+6.1¢); [[5/3]] (−6.5¢); [[81/49]] (+7.7¢) |
| | | N |
| | | Bb |
| | |- |
| | | 19 |
| | | 926.6 |
| | | 633.3 |
| | | SA4/SM5 |
| | | [[77/45]] (−3.3¢) |
| | | ^N |
| | | ^Bb, vCb, Gx |
| | |- |
| | | 20 |
| | | 975.3 |
| | | 666.7 |
| | | sA5/sm6/sd7 |
| | | [[135/77]] (+3.3¢) |
| | | vO |
| | | vA#, Cb |
| | |- |
| | | 21 |
| | | 1024.1 |
| | | 700 |
| | | A5/m6/d7 |
| | | [[165/91]] (−6.1¢); [[9/5]] (+6.5¢); [[49/27]] (−7.7¢) |
| | | O |
| | | A#, ^Cb |
| | |- |
| | | 22 |
| | | 1072.9 |
| | | 733.3 |
| | | SA5/Sm6/Sd7 |
| | | [[13/7]] (+1.2¢) |
| | | ^O |
| | | vB, ^A# |
| | |- |
| | | 23 |
| | | 1121.6 |
| | | 766.7 |
| | | sM6/sm7 |
| | | [[21/11]] (+2.2¢); [[25/13]] (−10.4¢) |
| | | vO#, vPb |
| | | B |
| | |- |
| | | 24 |
| | | 1170.4 |
| | | 800 |
| | | M6/m7 |
| | | [[49/25]] (+5.4¢); [[77/39]] (−7.2¢) |
| | | O#, Pb |
| | | ^B, vC |
| | |- |
| | | 25 |
| | | 1219.2 |
| | | 833.3 |
| | | SM6/Sm7 |
| | | [[91/45]] (+0.07¢); [[99/49]] (+1.6¢); [[55/27]] (−12.6¢) |
| | | ^O#, ^Pb |
| | | C |
| | |- |
| | | 26 |
| | | 1267.9 |
| | | 866.7 |
| | | sA6/sM7/sd8 |
| | | [[27/13]] (+2.6¢) |
| | | vP |
| | | ^C, vDb |
| | |- |
| | | 27 |
| | | 1316.7 |
| | | 900 |
| | | A6/M7/d8 |
| | | [[15/7]] (−2.7¢) |
| | | P |
| | | Db, vB# |
| | |- |
| | | 28 |
| | | 1365.5 |
| | | 933.3 |
| | | SA6/SM7/Sd8 |
| | | [[11/5]] (+0.5¢) |
| | | ^P |
| | | ^Db, B# |
| | |- |
| | | 29 |
| | | 1414.2 |
| | | 966.7 |
| | | sP8/sd9 |
| | | [[147/65]] (+1.5¢); [[25/11]] (−7.0¢) |
| | | vQ |
| | | vC#, ^B# |
| | |- |
| | | 30 |
| | | 1463.0 |
| | | 1000 |
| | | P8/d9 |
| | | [[7/3]] (−3.8¢); [[81/35]] (+10.3¢) |
| | | Q |
| | | C# |
| | |- |
| | | 31 |
| | | 1511.8 |
| | | 1033.3 |
| | | SP8/Sd9 |
| | | [[117/49]] (+5.0¢); [[65/27]] (−9.2¢) |
| | | ^Q |
| | | vD, ^C# |
| | |- |
| | | 32 |
| | | 1560.5 |
| | | 1066.7 |
| | | sA8/sm9 |
| | | [[27/11]] (+6.0¢); [[225/91]] (+6.6¢) |
| | | vQ#, vRb |
| | | D |
| | |- |
| | | 33 |
| | | 1609.3 |
| | | 1100 |
| | | A8/m9 |
| | | [[195/77]] (−0.7¢); [[33/13]] (−3.4¢); [[63/25]] (+9.2¢) |
| | | Q#, Rb |
| | | ^D, vEb |
| | |- |
| | | 34 |
| | | 1658.1 |
| | | 1133.3 |
| | | SA8/Sm9 |
| | | [[13/5]] (+3.9¢); [[55/21]] (−8.7¢) |
| | | ^Q#, ^Rb |
| | | Eb |
| | |- |
| | | 35 |
| | | 1706.9 |
| | | 1166.7 |
| | | sM9/sd10 |
| | | [[147/55]] (+4.9¢); [[243/91]] (+6.5¢); [[35/13]] (−7.7¢) |
| | | vR |
| | | ^Eb, vFb, Cx |
| | |- |
| | | 36 |
| | | 1755.7 |
| | | 1200 |
| | | M9/d10 |
| | | [[91/33]] (+0.4¢); [[135/49]] (+1.1¢); [[25/9]] (−13.1¢) |
| | | R |
| | | vD#, Fb |
| | |- |
| | | 37 |
| | | 1804.5 |
| | | 1233.3 |
| | | SM9/Sd10 |
| | | [[99/35]] (+4.3¢); [[77/27]] (−9.9¢) |
| | | ^R |
| | | D#, ^Fb |
| | |- |
| | | 38 |
| | | 1853.2 |
| | | 1266.7 |
| | | sA9/sP10 |
| | | [[225/77]] (−3.2¢); [[189/65]] (+5.3¢) |
| | | vJ |
| | | vE, ^D# |
| | |- |
| | | 39 |
| | | 1902.0 |
| | | 1300 |
| | | A9/P10 |
| | | [[3/1]] |
| | | J |
| | | E |
| | |} |
| | |
| | == Approximation to JI == |
| | |
| | === No-2 zeta peak === |
| | {| class="wikitable" |
| | |+ |
| | !Steps |
| | per octave |
| | !Steps |
| | per tritave |
| | !Step size |
| | (cents) |
| | !Height |
| | !Tritave size |
| | (cents) |
| | !Tritave stretch |
| | (cents) |
| | |- |
| | |24.573831630 |
| | |38.948601633 |
| | |48.832433543 |
| | |4.665720 |
| | |1904.464908194 |
| | |2.509907328 |
| | |} |
| | |
| | Every 7 steps of the [[172edo|172f]] val is an excellent approximation of the ninth no-2 zeta peak in the 15-limit. |
| | |
| | == Music == |
| | ; [[Francium]] |
| | * [https://www.youtube.com/watch?v=jstg4_B0jfY ''Strange Juice''] (2025) |
| | ;[https://www.youtube.com/@PhanomiumMusic Phanomium] |
| | * ''[https://www.youtube.com/watch?v=GX79ZX1Z8C8 Polygonal]'' (2025) |
Prime factorization
|
3 × 13
|
Step size
|
48.7681 ¢
|
Octave
|
25\39edt (1219.2 ¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
39 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 39edt or 39ed3), is a nonoctave tuning system that divides the interval of 3/1 into 39 equal parts of about 48.8 ¢ each. Each step represents a frequency ratio of 31/39, or the 39th root of 3. It is also known as the Triple Bohlen–Pierce scale (Triple BP), since it divides each step of the equal-tempered Bohlen–Pierce scale (13edt) into three equal parts.
39edt can be described as approximately 24.606edo. This implies that each step of 39edt can be approximated by 5 steps of 123edo. 39edt contains within it a close approximation of 4ed11/5: every seventh step of 39edt equates to a step of 4ed11/5.
Theory
It is a strong no-twos 13-limit system, a fact first noted by Paul Erlich; in fact it has a better no-twos 13-odd limit relative error than any other edt up to 914edt. Like 26edt and 52edt, it is a multiple of 13edt and so contains the Bohlen-Pierce scale, being contorted in the no-twos 7-limit, tempering out the same BP commas, 245/243 and 3125/3087, as 13edt. In the 11-limit it tempers out 1331/1323 and in the 13-limit 275/273, 1575/1573, and 847/845. An efficient traversal is therefore given by Mintra temperament, which in the 13-limit tempers out 275/273 and 1331/1323 alongside 245/243, and is generated by the interval of 11/7, which serves as a macrodiatonic "superpyth" fourth and splits the BPS generator of 9/7, up a tritave, in three.
If octaves are inserted, 39edt is related to the 49f & 172f temperament in the full 13-limit, known as triboh, tempering out 245/243, 275/273, 847/845 and 1575/1573, which has mapping [⟨1 0 0 0 0 0], ⟨0 39 57 69 85 91]]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth no-twos zeta peak edt.
When treated as an octave-repeating tuning with the sharp octave of 25 steps (about 1219 cents), and the other primes chosen by their best octave-reduced mappings, it functions as a tuning of mavila temperament, analogous to 25edo's mavila.
Mavila is one of the few places where octave-stretching makes sense, due to how flat the fifth and often the major third are; this fifth of 683 cents is much more recognizable as a perfect fifth of 3/2 than the 672-cent tuning with just octaves.
Approximation of prime harmonics in 39edt
Harmonic
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
23
|
29
|
31
|
37
|
Error
|
Absolute (¢)
|
+19.2
|
+0.0
|
-6.5
|
-3.8
|
-6.0
|
-2.6
|
+20.6
|
+23.1
|
-15.0
|
+22.6
|
+4.7
|
-9.0
|
Relative (%)
|
+39.4
|
+0.0
|
-13.4
|
-7.9
|
-12.4
|
-5.4
|
+42.3
|
+47.4
|
-30.8
|
+46.3
|
+9.6
|
-18.5
|
Steps (reduced)
|
25 (25)
|
39 (0)
|
57 (18)
|
69 (30)
|
85 (7)
|
91 (13)
|
101 (23)
|
105 (27)
|
111 (33)
|
120 (3)
|
122 (5)
|
128 (11)
|
Intervals
All intervals shown are within the 91-throdd limit and are consistently represented.
Steps
|
Cents
|
Hekts
|
Enneatonic degree
|
Corresponding 3.5.7.11.13 subgroup intervals
|
Lambda (sLsLsLsLs, J = 1/1)
|
Mintaka[7] (E macro-Phrygian)
|
0
|
0
|
0
|
P1
|
1/1
|
J
|
E
|
1
|
48.8
|
33.3
|
SP1
|
77/75 (+3.2¢); 65/63 (−5.3¢)
|
^J
|
^E, vF
|
2
|
97.5
|
66.7
|
sA1/sm2
|
35/33 (−4.3¢); 81/77 (+9.9¢)
|
vK
|
F
|
3
|
146.3
|
100
|
A1/m2
|
99/91 (+0.4¢); 49/45 (−1.1¢); 27/25 (+13.1¢)
|
K
|
^F, vGb, Dx
|
4
|
195.1
|
133.3
|
SA1/Sm2
|
55/49 (−4.9¢); 91/81 (−6.5¢); 39/35 (+7.7¢)
|
^K
|
Gb, vE#
|
5
|
243.8
|
166.7
|
sM2/sd3
|
15/13 (−3.9¢); 63/55 (+8.7¢)
|
vK#, vLb
|
^Gb, E#
|
6
|
292.6
|
200
|
M2/d3
|
77/65 (−0.7¢); 13/11 (+3.4¢); 25/21 (−9.2¢)
|
K#, Lb
|
vF#, ^E#
|
7
|
341.4
|
233.3
|
SM2/Sd3
|
11/9 (−6.0¢); 91/75 (+6.6¢)
|
^K#, ^Lb
|
F#
|
8
|
390.1
|
266.7
|
sA2/sP3/sd4
|
49/39 (−5.0¢); 81/65 (+9.2¢)
|
vL
|
vG, ^F#
|
9
|
438.9
|
300
|
A2/P3/d4
|
9/7 (+3.8¢); 35/27 (−10.3¢)
|
L
|
G
|
10
|
487.7
|
333.3
|
SA2/SP3/Sd4
|
65/49 (−1.5¢); 33/25 (+7.0¢)
|
^L
|
^G, vAb
|
11
|
536.4
|
366.7
|
sA3/sm4/sd5
|
15/11 (−0.5¢)
|
vM
|
Ab
|
12
|
585.2
|
400
|
A3/m4/d5
|
7/5 (+2.7¢)
|
M
|
^Ab, Fx
|
13
|
634.0
|
433.3
|
SA3/Sm4/Sd5
|
13/9 (−2.6¢)
|
^M
|
vG#
|
14
|
682.7
|
466.7
|
sM4/sm5
|
135/91 (+0.07¢); 49/33 (−1.6¢); 81/55 (+12.6¢)
|
vM#, vNb
|
G#
|
15
|
731.5
|
500
|
M4/m5
|
75/49 (−5.4¢); 117/77 (+7.2¢)
|
M#, Nb
|
vA, ^G#
|
16
|
780.3
|
533.3
|
SM4/Sm5
|
11/7 (−2.2¢); 39/25 (+10.4¢)
|
^M#, ^Nb
|
A
|
17
|
829.0
|
566.7
|
sA4/sM5
|
21/13 (−1.2¢)
|
vN
|
^A, vBb
|
18
|
877.8
|
600
|
A4/M5
|
91/55 (+6.1¢); 5/3 (−6.5¢); 81/49 (+7.7¢)
|
N
|
Bb
|
19
|
926.6
|
633.3
|
SA4/SM5
|
77/45 (−3.3¢)
|
^N
|
^Bb, vCb, Gx
|
20
|
975.3
|
666.7
|
sA5/sm6/sd7
|
135/77 (+3.3¢)
|
vO
|
vA#, Cb
|
21
|
1024.1
|
700
|
A5/m6/d7
|
165/91 (−6.1¢); 9/5 (+6.5¢); 49/27 (−7.7¢)
|
O
|
A#, ^Cb
|
22
|
1072.9
|
733.3
|
SA5/Sm6/Sd7
|
13/7 (+1.2¢)
|
^O
|
vB, ^A#
|
23
|
1121.6
|
766.7
|
sM6/sm7
|
21/11 (+2.2¢); 25/13 (−10.4¢)
|
vO#, vPb
|
B
|
24
|
1170.4
|
800
|
M6/m7
|
49/25 (+5.4¢); 77/39 (−7.2¢)
|
O#, Pb
|
^B, vC
|
25
|
1219.2
|
833.3
|
SM6/Sm7
|
91/45 (+0.07¢); 99/49 (+1.6¢); 55/27 (−12.6¢)
|
^O#, ^Pb
|
C
|
26
|
1267.9
|
866.7
|
sA6/sM7/sd8
|
27/13 (+2.6¢)
|
vP
|
^C, vDb
|
27
|
1316.7
|
900
|
A6/M7/d8
|
15/7 (−2.7¢)
|
P
|
Db, vB#
|
28
|
1365.5
|
933.3
|
SA6/SM7/Sd8
|
11/5 (+0.5¢)
|
^P
|
^Db, B#
|
29
|
1414.2
|
966.7
|
sP8/sd9
|
147/65 (+1.5¢); 25/11 (−7.0¢)
|
vQ
|
vC#, ^B#
|
30
|
1463.0
|
1000
|
P8/d9
|
7/3 (−3.8¢); 81/35 (+10.3¢)
|
Q
|
C#
|
31
|
1511.8
|
1033.3
|
SP8/Sd9
|
117/49 (+5.0¢); 65/27 (−9.2¢)
|
^Q
|
vD, ^C#
|
32
|
1560.5
|
1066.7
|
sA8/sm9
|
27/11 (+6.0¢); 225/91 (+6.6¢)
|
vQ#, vRb
|
D
|
33
|
1609.3
|
1100
|
A8/m9
|
195/77 (−0.7¢); 33/13 (−3.4¢); 63/25 (+9.2¢)
|
Q#, Rb
|
^D, vEb
|
34
|
1658.1
|
1133.3
|
SA8/Sm9
|
13/5 (+3.9¢); 55/21 (−8.7¢)
|
^Q#, ^Rb
|
Eb
|
35
|
1706.9
|
1166.7
|
sM9/sd10
|
147/55 (+4.9¢); 243/91 (+6.5¢); 35/13 (−7.7¢)
|
vR
|
^Eb, vFb, Cx
|
36
|
1755.7
|
1200
|
M9/d10
|
91/33 (+0.4¢); 135/49 (+1.1¢); 25/9 (−13.1¢)
|
R
|
vD#, Fb
|
37
|
1804.5
|
1233.3
|
SM9/Sd10
|
99/35 (+4.3¢); 77/27 (−9.9¢)
|
^R
|
D#, ^Fb
|
38
|
1853.2
|
1266.7
|
sA9/sP10
|
225/77 (−3.2¢); 189/65 (+5.3¢)
|
vJ
|
vE, ^D#
|
39
|
1902.0
|
1300
|
A9/P10
|
3/1
|
J
|
E
|
Approximation to JI
No-2 zeta peak
Steps
per octave
|
Steps
per tritave
|
Step size
(cents)
|
Height
|
Tritave size
(cents)
|
Tritave stretch
(cents)
|
24.573831630
|
38.948601633
|
48.832433543
|
4.665720
|
1904.464908194
|
2.509907328
|
Every 7 steps of the 172f val is an excellent approximation of the ninth no-2 zeta peak in the 15-limit.
Music
- Francium
- Phanomium