18/17: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>spt3125
**Imported revision 515317708 - Original comment: **
mNo edit summary
 
(16 intermediate revisions by 9 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox Interval
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = small septendecimal semitone
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-30 21:03:50 UTC</tt>.<br>
| Color name = 17u1, su unison
: The original revision id was <tt>515317708</tt>.<br>
| Sound = jid_18_17_pluck_adu_dr220.mp3
: The revision comment was: <tt></tt><br>
| Comma = yes
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
}}
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**18/17**
|1 2 0 0 0 0 -1&gt;
98.9546 cents
[[media type="file" key="jid_18_17_pluck_adu_dr220.mp3"]] [[file:xenharmonic/jid_18_17_pluck_adu_dr220.mp3|sound sample]]


In [[17-limit]] [[Just Intonation]], 18/17 is the "small septendecimal semitone" of about 99¢. It is very close to [[12edo]]'s "half step" of 100¢, and fairly close to the "large septendecimal semitone" of [[17_16|17/16]] (~105¢).
In [[17-limit]] [[just intonation]], '''18/17''' is the '''small septendecimal semitone''' of about 99{{cent}}. It is very close to [[12edo]]'s "half step" of 100¢, and fairly close to the "large septendecimal semitone" of [[17/16]] (~105¢).


See: [[Gallery of Just Intervals]]</pre></div>
== Terminology and notation ==
<h4>Original HTML content:</h4>
Conceptualization systems disagree on whether [[17/16]] should be a [[diatonic semitone]] or a [[chromatic semitone]], and as a result the disagreement propagates to all intervals of [[harmonic class|HC17]]. See [[17-limit]] for a detailed discussion.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;18_17&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;18/17&lt;/strong&gt;&lt;br /&gt;
 
|1 2 0 0 0 0 -1&amp;gt;&lt;br /&gt;
For 18/17 specifically:
98.9546 cents&lt;br /&gt;
* In the [[Functional Just System]], it is a chromatic semitone, separated by [[4131/4096]] from the [[2187/2048|Pythagorean augmented unison (2187/2048)]].  
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_18_17_pluck_adu_dr220.mp3?h=20&amp;amp;w=240&amp;quot; class=&amp;quot;WikiMedia WikiMediaFile&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;file&amp;amp;quot; key=&amp;amp;quot;jid_18_17_pluck_adu_dr220.mp3&amp;amp;quot;&amp;quot; title=&amp;quot;Local Media File&amp;quot;height=&amp;quot;20&amp;quot; width=&amp;quot;240&amp;quot;/&amp;gt; --&gt;&lt;embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_18_17_pluck_adu_dr220.mp3?file_extension=mp3&amp;autostart=false&amp;repeat=false&amp;showdigits=true&amp;showfsbutton=false&amp;width=240&amp;height=20"&gt;&lt;/embed&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt; &lt;a href="http://xenharmonic.wikispaces.com/file/view/jid_18_17_pluck_adu_dr220.mp3/515315568/jid_18_17_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_18_17_pluck_adu_dr220.mp3/515315568/jid_18_17_pluck_adu_dr220.mp3');"&gt;sound sample&lt;/a&gt;&lt;br /&gt;
* In [[Helmholtz-Ellis notation]], it is a diatonic semitone, separated by [[2187/2176]] from the [[256/243|Pythagorean minor second (256/243)]].  
&lt;br /&gt;
 
In &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt;, 18/17 is the &amp;quot;small septendecimal semitone&amp;quot; of about 99¢. It is very close to &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;'s &amp;quot;half step&amp;quot; of 100¢, and fairly close to the &amp;quot;large septendecimal semitone&amp;quot; of &lt;a class="wiki_link" href="/17_16"&gt;17/16&lt;/a&gt; (~105¢).&lt;br /&gt;
The term ''small septendecimal semitone'' omits the diatonic/chromatic part and only describes its melodic property i.e. the size. It is said in contrast to the large septendecimal semitone of 17/16.  
&lt;br /&gt;
 
See: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
== Temperaments ==
{{w|Vincenzo Galilei}} (1520-1591) proposed a tuning based on eleven 18/17 semitones and one larger semitone of about 111.5{{cent}} (the [[octave complement]])<ref>Barbour, J. Murray. ''[https://archive.org/details/tuningtemperamen00barb/page/n7/mode/2up Tuning and temperament: a historical survey]'', p.&nbsp;57.</ref>. This [[well temperament]] provides seven wide perfect fifths of about 705.2{{cent}} and five narrow perfect fifths of about 692.7{{cent}}, whose distribution is [[maximally even]] instead of grouping together the wide and the narrow fifths along the [[circle of fifths]], as is often the case in other well temperaments.
 
The following [[linear temperament]]s are [[generate]]d by a [[~]]18/17 in the 2.3.5.17 and 2.3.5.17.19 [[subgroup]]s:
* [[Quintaleap]]
* [[Quindromeda]]
* [[Schismatic_family#Quintilischis_(2.3.5.17)|Quintilischis]].
{{todo|complete list}}
Note that all of these reach [[4/3]] as a stack of five 18/17 intervals (tempering out the [[quinticular comma]]).
 
Some [[12th-octave temperaments]] treat ~18/17 as the period, including [[compton]]'s 17-limit extension.
 
== See also ==
* [[17/9]] – its [[octave complement]]
* [[17/12]] – its [[fifth complement]]
* [[Gallery of just intervals]]
* [[List of superparticular intervals]]
 
== References ==
<references/>
 
[[Category:Second]]
[[Category:Chroma]]
[[Category:Semitone]]
[[Category:Commas named after their interval size]]

Latest revision as of 07:22, 17 August 2025

Interval information
Ratio 18/17
Subgroup monzo 2.3.17 [1 2 -1
Size in cents 98.95459¢
Name small septendecimal semitone
Color name 17u1, su unison
FJS name [math]\displaystyle{ \text{A1}_{17} }[/math]
Special properties superparticular,
reduced
Tenney height (log2 nd) 8.25739
Weil height (log2 max(n, d)) 8.33985
Wilson height (sopfr(nd)) 25
Comma size medium

[sound info]
Open this interval in xen-calc

In 17-limit just intonation, 18/17 is the small septendecimal semitone of about 99 ¢. It is very close to 12edo's "half step" of 100¢, and fairly close to the "large septendecimal semitone" of 17/16 (~105¢).

Terminology and notation

Conceptualization systems disagree on whether 17/16 should be a diatonic semitone or a chromatic semitone, and as a result the disagreement propagates to all intervals of HC17. See 17-limit for a detailed discussion.

For 18/17 specifically:

The term small septendecimal semitone omits the diatonic/chromatic part and only describes its melodic property i.e. the size. It is said in contrast to the large septendecimal semitone of 17/16.

Temperaments

Vincenzo Galilei (1520-1591) proposed a tuning based on eleven 18/17 semitones and one larger semitone of about 111.5 ¢ (the octave complement)[1]. This well temperament provides seven wide perfect fifths of about 705.2 ¢ and five narrow perfect fifths of about 692.7 ¢, whose distribution is maximally even instead of grouping together the wide and the narrow fifths along the circle of fifths, as is often the case in other well temperaments.

The following linear temperaments are generated by a ~18/17 in the 2.3.5.17 and 2.3.5.17.19 subgroups:

Note that all of these reach 4/3 as a stack of five 18/17 intervals (tempering out the quinticular comma).

Some 12th-octave temperaments treat ~18/17 as the period, including compton's 17-limit extension.

See also

References

  1. Barbour, J. Murray. Tuning and temperament: a historical survey, p. 57.