Diminished family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m +links and categories
Post-move cleanup
 
(34 intermediate revisions by 9 users not shown)
Line 1: Line 1:
__FORCETOC__
{{Technical data page}}
The '''dimipent family''' tempers out the major diesis aka diminished comma, [[648/625]], the amount by which four [[6/5]] minor thirds exceed an [[octave]], and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as 12edo.  
The '''diminished family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the major diesis a.k.a. diminished comma, [[648/625]], the amount by which four [[6/5]] minor thirds exceed an [[octave]], and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]].  


=Dimipent=
== Diminished ==
Comma: 648/625
{{Main| Diminished (temperament) }}


POTE generator: ~3/2 =  699.507
The [[generator]] of diminished can be taken as a fifth or a semitone, and 12edo, with its excellent fifth, is an obvious tuning, though a flatter fifth might be preferred to go with the flat minor third. Its [[ploidacot]] is tetraploid monocot.  


Map: [<4 0 3|, <0 1 1|]
[[Subgroup]]: 2.3.5


EDOs: 8, 12
[[Comma list]]: 648/625


Badness: 0.0472
{{Mapping|legend=1| 4 0 3 | 0 1 1 }}


=Hemidim=
[[Optimal tuning]]s:
Commas: 49/48, 648/625
* [[WE]]: ~6/5 = 299.6476{{c}}, ~3/2 = 698.6854{{c}} (~25/24 = 99.3903{{c}})
: [[error map]]: {{val| -1.410 -4.679 +9.905 }}
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~3/2 = 698.2660{{c}} (~25/24 = 98.2660{{c}})
: error map: {{val| 0.000 -3.689 +11.952 }}


POTE generator: ~8/7 = 252.555
{{Optimal ET sequence|legend=1| 4, 8, 12 }}


Map: [<4 0 3 8|, <0 2 2 1|]
[[Badness]] (Sintel): 1.11


Wedgie: <<8 8 4 -6 -16 -13||
== Septimal diminished ==
{{Main| Diminished (temperament) }}


EDOs: 24, 52d, 76cd
[[Subgroup]]: 2.3.5.7


Badness: 0.0864
[[Comma list]]: 36/35, 50/49


==11-limit==
{{Mapping|legend=1| 4 0 3 5 | 0 1 1 1 }}
Commas: 49/48, 77/75, 243/242


POTE generator: ~8/7 = 251.658
[[Optimal tuning]]s:
* [[WE]]: ~6/5 = 299.0347{{c}}, ~3/2 = 697.2727{{c}} (~21/20 = 99.2032{{c}})
: [[error map]]: {{val| -3.861 -8.543 +4.202 +19.759 }}
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~3/2 = 695.9619{{c}} (~21/20 = 95.9619{{c}})
: error map: {{val| 0.000 -5.993 +9.648 +27.136 }}


Map: [<4 0 3 8 -2|, <0 2 2 1 5|]
{{Optimal ET sequence|legend=1| 4, 8d, 12 }}


EDOs: 24, 76cde
[[Badness]] (Sintel): 0.567


Badness: 0.0566
=== 11-limit ===
Subgroup: 2.3.5.7.11


==13-limit==
Comma list: 36/35, 50/49, 56/55
Commas: 49/48, 66/65, 77/75, 648/625


POTE generator: ~8/7 = 252.225
Mapping: {{mapping| 4 0 3 5 14 | 0 1 1 1 0 }}


Map: [<4 0 3 8 -2 -1|, <0 2 2 1 5 5|]
Optimal tunings:  
* WE: ~6/5 = 297.8458{{c}}, ~3/2 = 703.9277{{c}} (~15/14 = 108.2361{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 703.5558{{c}} (~15/14 = 103.5558{{c}})


EDOs: 24, 52de, 76cde
{{Optimal ET sequence|legend=0| 4, 8d, 12, 32cddee, 44cddeee }}


Badness: 0.039
Badness (Sintel): 0.732


=Semidim=
==== 13-limit ====
Commas: 245/243, 392/375
Subgroup: 2.3.5.7.11.13


POTE generator4: ~3/2 = 707.014
Comma list: 36/35, 40/39, 50/49, 66/65


Map: [<8 0 6 -3|, <0 1 1 2|]
Mapping: {{mapping| 4 0 3 5 14 15 | 0 1 1 1 0 0 }}


Wedgie: <<8 8 16 -6 3 15||
Optimal tunings:  
* WE: ~6/5 = 297.2520{{c}}, ~3/2 = 707.2352{{c}} (~15/14 = 112.7312{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 708.4648{{c}} (~15/14 = 108.4648{{c}})


EDOs: 24, 32c, 56c
{{Optimal ET sequence|legend=0| 4, 8d, 12f, 20cdef, 32cddeefff }}


Badness: 0.1075
Badness (Sintel): 0.806


==11-limit==
=== Demolished ===
Commas: 56/55, 77/75, 245/243
Subgroup: 2.3.5.7.11


POTE generator: ~3/2 = 706.645
Comma list: 36/35, 45/44, 50/49


Map: [<8 0 6 -3 15|, <0 1 1 2 1|]
Mapping: {{mapping| 4 0 3 5 -5 | 0 1 1 1 3 }}


EDOs: 24, 32c, 56c
Optimal tunings:  
* WE: ~6/5 = 299.6308{{c}}, ~3/2 = 689.0322{{c}} (~21/20 = 89.7707{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 688.9304{{c}} (~21/20 = 88.9304{{c}})


Badness: 0.0476
{{Optimal ET sequence|legend=0| 4e, 8dee, 12, 28 }}


==13-limit==
Badness (Smith): 0.879
Commas: 56/55, 66/65, 77/75, 507/500


POTE generator: ~3/2 = 707.376
=== Cohedim ===
This extension has been documented in Graham Breed's temperament finder as ''hemidim'', the same name as [[#Hemidim|11-limit 4e & 24 and 13-limit 4ef & 24]]. For the 11-limit 8bce & 12 temperament, ''cohedim'' arguably makes more sense. Its ploidacot is tetraploid alpha-dicot.  


Map: [<8 0 6 -3 15 17|, <0 1 1 2 1 1|]
Subgroup: 2.3.5.7.11


EDOs: 24, 32cf, 56cf
Comma list: 36/35, 50/49, 125/121


Badness: 0.0306
Mapping: {{mapping| 4 1 4 6 6 | 0 2 2 2 3 }}


[[Category:Theory]]
: mapping generators: ~6/5, ~11/7
[[Category:Temperament family]]
[[Category:Diminished]]
[[Category:Rank-2]]


[[Category:Todo:review]]
Optimal tunings:
* WE: ~6/5 = 298.7799{{c}}, ~11/7 = 795.0744{{c}} (~12/11 = 101.2653{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~11/7 = 796.0102{{c}} (~12/11 = 103.9898{{c}})
 
{{Optimal ET sequence|legend=0| 8bce, 12 }}
 
Badness (Sintel): 1.82
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 36/35, 50/49, 66/65, 125/121
 
Mapping: {{mapping| 4 1 4 6 6 7 | 0 2 2 2 3 3 }}
 
Optimal tunings:
* WE: ~6/5 = 298.4646{{c}}, ~11/7 = 793.6185{{c}} (~12/11 = 101.7754{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~11/7 = 794.7323{{c}} (~12/11 = 105.2677{{c}})
 
{{Optimal ET sequence|legend=0| 8bcef, 12f }}
 
Badness (Sintel): 1.72
 
== Hemidim ==
Hemidim tempers out 49/48 and may be described as the {{nowrap| 4 & 24 }} temperament. Its ploidcot is tetraploid dicot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 49/48, 648/625
 
{{Mapping|legend=1| 4 0 3 8 | 0 2 2 1 }}
 
: mapping generators: ~6/5, ~7/4
 
[[Optimal tuning]]s:
* [[WE]]: ~6/5 = 300.5053{{c}}, ~7/4 = 949.0409{{c}} (~36/35 = 47.5250{{c}})
: [[error map]]: {{val| +2.021 -3.873 +13.284 -15.743 }}
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~7/4 = 948.2575{{c}} (~36/35 = 48.2575{{c}})
: error map: {{val| 0.000 -5.440 +10.201 -20.568 }}
 
{{Optimal ET sequence|legend=1| 4, …, 20c, 24 }}
 
[[Badness]] (Sintel): 2.19
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 49/48, 77/75, 243/242
 
Mapping: {{mapping| 4 0 3 8 -2 | 0 2 2 1 5 }}
 
Optimal tunings:
* WE: ~6/5 = 300.4282{{c}}, ~7/4 = 949.6958{{c}} (~36/35 = 48.4112{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~7/4 = 948.9065{{c}} (~36/35 = 48.9065{{c}})
 
{{Optimal ET sequence|legend=0| 4e, 20ce, 24 }}
 
Badness (Sintel): 1.87
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 49/48, 66/65, 77/75, 243/242
 
Mapping: {{mapping| 4 0 3 8 -2 -1 | 0 2 2 1 5 5 }}
 
Optimal tunings:
* WE: ~6/5 = 300.4282{{c}}, ~7/4 = 949.2440{{c}} (~36/35 = 47.8487{{c}})
* CWE: ~6/5 = 300.0000{{c}}, ~7/4 = 948.3581{{c}} (~36/35 = 48.3581{{c}})
 
{{Optimal ET sequence|legend=0| 4ef, 24 }}
 
Badness (Sintel): 1.61
 
== Octonion ==
Octonion tempers out 245/243, and may be described as the {{nowrap| 8d & 24 }} temperament. Its ploidacot is octoploid monocot.
 
It was formerly known as ''semidim'' but renamed to avoid confusion with another temperament of the same name.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 392/375
 
{{Mapping|legend=1| 8 0 6 -3 | 0 1 1 2 }}
 
: mapping generators: ~15/14, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~15/14 = 149.6673{{c}}, ~3/2 = 705.4455{{c}} (~36/35 = 42.8910{{c}})
: [[error map]]: {{val| -2.662 +0.828 +14.474 -12.260 }}
* [[CWE]]: ~15/14 = 150.0000{{c}}, ~3/2 = 704.9636{{c}} (~36/35 = 45.0364{{c}})
: error map: {{val| 0.000 +3.008 +18.650 -8.899 }}
 
{{Optimal ET sequence|legend=1| 8d, 16d, 24, 32c }}
 
[[Badness]] (Sintel): 2.72
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 56/55, 77/75, 245/243
 
Mapping: {{mapping| 8 0 6 -3 15 | 0 1 1 2 1 }}
 
Optimal tunings:
* WE: ~12/11 = 149.7102{{c}}, ~3/2 = 705.2799{{c}} (~36/35 = 43.2712{{c}})
* CWE: ~12/11 = 150.0000{{c}}, ~3/2 = 704.9285{{c}} (~36/35 = 45.0715{{c}})
 
{{Optimal ET sequence|legend=0| 8d, 16d, 24, 32c }}
 
Badness (Sintel): 1.57
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 56/55, 66/65, 77/75, 507/500
 
Mapping: {{mapping| 8 0 6 -3 15 17 | 0 1 1 2 1 1 }}
 
Optimal tunings:
* WE: ~12/11 = 149.6311{{c}}, ~3/2 = 705.6367{{c}} (~36/35 = 42.5188{{c}})
* CWE: ~12/11 = 150.0000{{c}}, ~3/2 = 705.2777{{c}} (~36/35 = 44.7223{{c}})
 
{{Optimal ET sequence|legend=0| 8d, 16d, 24, 32cf }}
 
Badness (Sintel): 1.26
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Diminished family| ]] <!-- main article -->
[[Category:Diminished| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 12:13, 21 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The diminished family of temperaments tempers out the major diesis a.k.a. diminished comma, 648/625, the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as 12edo.

Diminished

The generator of diminished can be taken as a fifth or a semitone, and 12edo, with its excellent fifth, is an obvious tuning, though a flatter fifth might be preferred to go with the flat minor third. Its ploidacot is tetraploid monocot.

Subgroup: 2.3.5

Comma list: 648/625

Mapping[4 0 3], 0 1 1]]

Optimal tunings:

  • WE: ~6/5 = 299.6476 ¢, ~3/2 = 698.6854 ¢ (~25/24 = 99.3903 ¢)
error map: -1.410 -4.679 +9.905]
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 698.2660 ¢ (~25/24 = 98.2660 ¢)
error map: 0.000 -3.689 +11.952]

Optimal ET sequence4, 8, 12

Badness (Sintel): 1.11

Septimal diminished

Subgroup: 2.3.5.7

Comma list: 36/35, 50/49

Mapping[4 0 3 5], 0 1 1 1]]

Optimal tunings:

  • WE: ~6/5 = 299.0347 ¢, ~3/2 = 697.2727 ¢ (~21/20 = 99.2032 ¢)
error map: -3.861 -8.543 +4.202 +19.759]
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 695.9619 ¢ (~21/20 = 95.9619 ¢)
error map: 0.000 -5.993 +9.648 +27.136]

Optimal ET sequence4, 8d, 12

Badness (Sintel): 0.567

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 56/55

Mapping: [4 0 3 5 14], 0 1 1 1 0]]

Optimal tunings:

  • WE: ~6/5 = 297.8458 ¢, ~3/2 = 703.9277 ¢ (~15/14 = 108.2361 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 703.5558 ¢ (~15/14 = 103.5558 ¢)

Optimal ET sequence: 4, 8d, 12, 32cddee, 44cddeee

Badness (Sintel): 0.732

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 40/39, 50/49, 66/65

Mapping: [4 0 3 5 14 15], 0 1 1 1 0 0]]

Optimal tunings:

  • WE: ~6/5 = 297.2520 ¢, ~3/2 = 707.2352 ¢ (~15/14 = 112.7312 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 708.4648 ¢ (~15/14 = 108.4648 ¢)

Optimal ET sequence: 4, 8d, 12f, 20cdef, 32cddeefff

Badness (Sintel): 0.806

Demolished

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 50/49

Mapping: [4 0 3 5 -5], 0 1 1 1 3]]

Optimal tunings:

  • WE: ~6/5 = 299.6308 ¢, ~3/2 = 689.0322 ¢ (~21/20 = 89.7707 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 688.9304 ¢ (~21/20 = 88.9304 ¢)

Optimal ET sequence: 4e, 8dee, 12, 28

Badness (Smith): 0.879

Cohedim

This extension has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e & 24 and 13-limit 4ef & 24. For the 11-limit 8bce & 12 temperament, cohedim arguably makes more sense. Its ploidacot is tetraploid alpha-dicot.

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 125/121

Mapping: [4 1 4 6 6], 0 2 2 2 3]]

mapping generators: ~6/5, ~11/7

Optimal tunings:

  • WE: ~6/5 = 298.7799 ¢, ~11/7 = 795.0744 ¢ (~12/11 = 101.2653 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~11/7 = 796.0102 ¢ (~12/11 = 103.9898 ¢)

Optimal ET sequence: 8bce, 12

Badness (Sintel): 1.82

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 50/49, 66/65, 125/121

Mapping: [4 1 4 6 6 7], 0 2 2 2 3 3]]

Optimal tunings:

  • WE: ~6/5 = 298.4646 ¢, ~11/7 = 793.6185 ¢ (~12/11 = 101.7754 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~11/7 = 794.7323 ¢ (~12/11 = 105.2677 ¢)

Optimal ET sequence: 8bcef, 12f

Badness (Sintel): 1.72

Hemidim

Hemidim tempers out 49/48 and may be described as the 4 & 24 temperament. Its ploidcot is tetraploid dicot.

Subgroup: 2.3.5.7

Comma list: 49/48, 648/625

Mapping[4 0 3 8], 0 2 2 1]]

mapping generators: ~6/5, ~7/4

Optimal tunings:

  • WE: ~6/5 = 300.5053 ¢, ~7/4 = 949.0409 ¢ (~36/35 = 47.5250 ¢)
error map: +2.021 -3.873 +13.284 -15.743]
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.2575 ¢ (~36/35 = 48.2575 ¢)
error map: 0.000 -5.440 +10.201 -20.568]

Optimal ET sequence4, …, 20c, 24

Badness (Sintel): 2.19

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 243/242

Mapping: [4 0 3 8 -2], 0 2 2 1 5]]

Optimal tunings:

  • WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.6958 ¢ (~36/35 = 48.4112 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.9065 ¢ (~36/35 = 48.9065 ¢)

Optimal ET sequence: 4e, 20ce, 24

Badness (Sintel): 1.87

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 243/242

Mapping: [4 0 3 8 -2 -1], 0 2 2 1 5 5]]

Optimal tunings:

  • WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.2440 ¢ (~36/35 = 47.8487 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.3581 ¢ (~36/35 = 48.3581 ¢)

Optimal ET sequence: 4ef, 24

Badness (Sintel): 1.61

Octonion

Octonion tempers out 245/243, and may be described as the 8d & 24 temperament. Its ploidacot is octoploid monocot.

It was formerly known as semidim but renamed to avoid confusion with another temperament of the same name.

Subgroup: 2.3.5.7

Comma list: 245/243, 392/375

Mapping[8 0 6 -3], 0 1 1 2]]

mapping generators: ~15/14, ~3

Optimal tunings:

  • WE: ~15/14 = 149.6673 ¢, ~3/2 = 705.4455 ¢ (~36/35 = 42.8910 ¢)
error map: -2.662 +0.828 +14.474 -12.260]
  • CWE: ~15/14 = 150.0000 ¢, ~3/2 = 704.9636 ¢ (~36/35 = 45.0364 ¢)
error map: 0.000 +3.008 +18.650 -8.899]

Optimal ET sequence8d, 16d, 24, 32c

Badness (Sintel): 2.72

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 245/243

Mapping: [8 0 6 -3 15], 0 1 1 2 1]]

Optimal tunings:

  • WE: ~12/11 = 149.7102 ¢, ~3/2 = 705.2799 ¢ (~36/35 = 43.2712 ¢)
  • CWE: ~12/11 = 150.0000 ¢, ~3/2 = 704.9285 ¢ (~36/35 = 45.0715 ¢)

Optimal ET sequence: 8d, 16d, 24, 32c

Badness (Sintel): 1.57

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 66/65, 77/75, 507/500

Mapping: [8 0 6 -3 15 17], 0 1 1 2 1 1]]

Optimal tunings:

  • WE: ~12/11 = 149.6311 ¢, ~3/2 = 705.6367 ¢ (~36/35 = 42.5188 ¢)
  • CWE: ~12/11 = 150.0000 ¢, ~3/2 = 705.2777 ¢ (~36/35 = 44.7223 ¢)

Optimal ET sequence: 8d, 16d, 24, 32cf

Badness (Sintel): 1.26