Jubilismic family: Difference between revisions
m {{Technical data page}}<br><br> |
- POTE tunings |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | {{Technical data page}} | ||
The '''jubilismic family''' | The '''jubilismic family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[50/49]] in the full [[7-limit]]. It therefore identifies the two septimal tritones [[7/5]] and [[10/7]], an identification familiar from [[12edo]]. While many rank-3 temperaments are planar, a jubilismic temperament divides the [[2/1|octave]] in two. Related to this is the 2.5.7-subgroup {50/49} temperament [[jubilic]]. | ||
== Jubilismic == | == Jubilismic == | ||
Line 11: | Line 11: | ||
: mapping generators: ~7/5, ~3, ~5 | : mapping generators: ~7/5, ~3, ~5 | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[WE]]: ~7/5 = 599.6673{{c}}, ~3/2 = 702.5906{{c}}, ~5/4 = 380.6287{{c}} | |||
: [[error map]]: {{val| -0.665 -0.030 -7.016 +10.139 }} | |||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 702.4574{{c}}, ~5/4 = 380.0086{{c}} | |||
: error map: {{val| 0.000 +0.502 -6.305 +11.183 }} | |||
[[Minimax tuning]]: | [[Minimax tuning]]: | ||
* 7- and [[9-odd-limit]] | * 7- and [[9-odd-limit]] | ||
: {{monzo list| 1 0 0 0 | 0 1 0 0 | -1/4 0 1/2 1/2 | 1/4 0 1/2 1/2 }} | : {{monzo list| 1 0 0 0 | 0 1 0 0 | -1/4 0 1/2 1/2 | 1/4 0 1/2 1/2 }} | ||
: [[ | : [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3.35 | ||
{{Optimal ET sequence|legend=1| 4, 8d, 10, 12, 22, 34d, 48 }} | {{Optimal ET sequence|legend=1| 4, 8d, 10, 12, 22, 34d, 48, 60d }} | ||
[[Badness]] (Sintel): 0.561 | |||
Scales: [[jubilismic10]], [[jubilismic12]] | Scales: [[jubilismic10]], [[jubilismic12]] | ||
== Jubilee | == Jubilee == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 29: | Line 35: | ||
{{Mapping|legend=1| 2 0 0 1 4 | 0 1 0 0 -2 | 0 0 1 1 2 }} | {{Mapping|legend=1| 2 0 0 1 4 | 0 1 0 0 -2 | 0 0 1 1 2 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[WE]]: ~7/5 = 599.6219{{c}}, ~3/2 = 702.9722{{c}}, ~5/4 = 380.4574{{c}} | |||
: [[error map]]: {{val| -0.756 +0.261 -7.369 +9.741 +0.628 }} | |||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 702.9249{{c}}, ~5/4 = 379.6796{{c}} | |||
: error map: {{val| 0.000 +0.970 -6.634 +10.854 +2.192 }} | |||
{{Optimal ET sequence|legend=1| 4, 8d, 10e, 12, 22, 34d, 48 }} | {{Optimal ET sequence|legend=1| 4, 8d, 10e, 12, 22, 34d, 48 }} | ||
[[Badness]]: 0. | [[Badness]] (Sintel): 0.673 | ||
== Festival | == Festival == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 42: | Line 52: | ||
{{Mapping|legend=1| 2 0 0 1 -4 | 0 1 0 0 2 | 0 0 1 1 1 }} | {{Mapping|legend=1| 2 0 0 1 -4 | 0 1 0 0 2 | 0 0 1 1 1 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[WE]]: ~7/5 = 600.8501{{c}}, ~3/2 = 694.6084{{c}}, ~5/4 = 371.7918{{c}} | |||
: [[error map]]: {{val| +1.700 -5.646 -11.121 +7.216 +13.091 }} | |||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.5001{{c}}, ~5/4 = 372.9799{{c}} | |||
: error map: {{val| 0.000 -7.455 -13.334 +4.154 +10.662 }} | |||
{{Optimal ET sequence|legend=1| 10, 12, 22e, 26 }} | {{Optimal ET sequence|legend=1| 10, 12, 22e, 26 }} | ||
[[Badness]]: 0. | [[Badness]] (Sintel): 0.827 | ||
== Fiesta | == Fiesta == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 55: | Line 69: | ||
{{Mapping|legend=1| 2 0 0 1 7 | 0 1 0 0 0 | 0 0 1 1 0 }} | {{Mapping|legend=1| 2 0 0 1 7 | 0 1 0 0 0 | 0 0 1 1 0 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]: | ||
* [[WE]]: ~7/5 = 596.3068{{c}}, ~3/2 = 709.1930{{c}}, ~5/4 = 395.2472{{c}} | |||
: [[error map]]: {{val| -7.386 -0.148 -5.839 +7.955 +22.830 }} | |||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.6819{{c}}, ~5/4 = 391.4911{{c}} | |||
: error map: {{val| 0.000 +7.727 +5.177 +22.665 +48.682 }} | |||
{{Optimal ET sequence|legend=1| 8d, 10, 12, 22e }} | {{Optimal ET sequence|legend=1| 8d, 10, 12, 22e, 30dee, 42ddeee }} | ||
[[Badness]]: 0. | [[Badness]] (Sintel): 0.861 | ||
== Jamboree | == Jamboree == | ||
[[Subgroup]]: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
Line 68: | Line 86: | ||
{{Mapping|legend=1| 2 0 0 1 2 | 0 1 0 0 3 | 0 0 1 1 -1 }} | {{Mapping|legend=1| 2 0 0 1 2 | 0 1 0 0 3 | 0 0 1 1 -1 }} | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[WE]]: ~7/5 = 600.0436{{c}}, ~3/2 = 706.7073{{c}}, ~5/4 = 376.8582{{c}} | |||
: [[error map]]: {{val| +0.087 +4.839 -9.281 +8.250 -7.880 }} | |||
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 706.7334{{c}}, ~5/4 = 376.9332{{c}} | |||
: error map: {{val| 0.000 +4.778 -9.381 +8.107 -8.051 }} | |||
{{Optimal ET sequence|legend=1| 8d, 10, 12e, 14c, 22 }} | {{Optimal ET sequence|legend=1| 8d, 10, 12e, 14c, 22, 58ce }} | ||
[[Badness]]: 0. | [[Badness]] (Sintel): 0.938 | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Jubilismic family| ]] <!-- main article --> | [[Category:Jubilismic family| ]] <!-- main article --> | ||
[[Category:Jubilismic| ]] <!-- key article --> | [[Category:Jubilismic| ]] <!-- key article --> | ||
[[Category:Rank 3]] | [[Category:Rank 3]] |
Latest revision as of 14:18, 22 July 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The jubilismic family of rank-3 temperaments tempers out 50/49 in the full 7-limit. It therefore identifies the two septimal tritones 7/5 and 10/7, an identification familiar from 12edo. While many rank-3 temperaments are planar, a jubilismic temperament divides the octave in two. Related to this is the 2.5.7-subgroup {50/49} temperament jubilic.
Jubilismic
Subgroup: 2.3.5.7
Comma list: 50/49
Mapping: [⟨2 0 0 1], ⟨0 1 0 0], ⟨0 0 1 1]]
- mapping generators: ~7/5, ~3, ~5
- WE: ~7/5 = 599.6673 ¢, ~3/2 = 702.5906 ¢, ~5/4 = 380.6287 ¢
- error map: ⟨-0.665 -0.030 -7.016 +10.139]
- CWE: ~7/5 = 600.0000 ¢, ~3/2 = 702.4574 ¢, ~5/4 = 380.0086 ¢
- error map: ⟨0.000 +0.502 -6.305 +11.183]
- 7- and 9-odd-limit
- [[1 0 0 0⟩, [0 1 0 0⟩, [-1/4 0 1/2 1/2⟩, [1/4 0 1/2 1/2⟩]
- unchanged-interval (eigenmonzo) basis: 2.3.35
Optimal ET sequence: 4, 8d, 10, 12, 22, 34d, 48, 60d
Badness (Sintel): 0.561
Scales: jubilismic10, jubilismic12
Jubilee
Subgroup: 2.3.5.7.11
Comma list: 50/49, 99/98
Mapping: [⟨2 0 0 1 4], ⟨0 1 0 0 -2], ⟨0 0 1 1 2]]
- WE: ~7/5 = 599.6219 ¢, ~3/2 = 702.9722 ¢, ~5/4 = 380.4574 ¢
- error map: ⟨-0.756 +0.261 -7.369 +9.741 +0.628]
- CWE: ~7/5 = 600.0000 ¢, ~3/2 = 702.9249 ¢, ~5/4 = 379.6796 ¢
- error map: ⟨0.000 +0.970 -6.634 +10.854 +2.192]
Optimal ET sequence: 4, 8d, 10e, 12, 22, 34d, 48
Badness (Sintel): 0.673
Festival
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49
Mapping: [⟨2 0 0 1 -4], ⟨0 1 0 0 2], ⟨0 0 1 1 1]]
- WE: ~7/5 = 600.8501 ¢, ~3/2 = 694.6084 ¢, ~5/4 = 371.7918 ¢
- error map: ⟨+1.700 -5.646 -11.121 +7.216 +13.091]
- CWE: ~7/5 = 600.0000 ¢, ~3/2 = 694.5001 ¢, ~5/4 = 372.9799 ¢
- error map: ⟨0.000 -7.455 -13.334 +4.154 +10.662]
Optimal ET sequence: 10, 12, 22e, 26
Badness (Sintel): 0.827
Fiesta
Subgroup: 2.3.5.7.11
Comma list: 50/49, 56/55
Mapping: [⟨2 0 0 1 7], ⟨0 1 0 0 0], ⟨0 0 1 1 0]]
- WE: ~7/5 = 596.3068 ¢, ~3/2 = 709.1930 ¢, ~5/4 = 395.2472 ¢
- error map: ⟨-7.386 -0.148 -5.839 +7.955 +22.830]
- CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.6819 ¢, ~5/4 = 391.4911 ¢
- error map: ⟨0.000 +7.727 +5.177 +22.665 +48.682]
Optimal ET sequence: 8d, 10, 12, 22e, 30dee, 42ddeee
Badness (Sintel): 0.861
Jamboree
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54
Mapping: [⟨2 0 0 1 2], ⟨0 1 0 0 3], ⟨0 0 1 1 -1]]
- WE: ~7/5 = 600.0436 ¢, ~3/2 = 706.7073 ¢, ~5/4 = 376.8582 ¢
- error map: ⟨+0.087 +4.839 -9.281 +8.250 -7.880]
- CWE: ~7/5 = 600.0000 ¢, ~3/2 = 706.7334 ¢, ~5/4 = 376.9332 ¢
- error map: ⟨0.000 +4.778 -9.381 +8.107 -8.051]
Optimal ET sequence: 8d, 10, 12e, 14c, 22, 58ce
Badness (Sintel): 0.938