88edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(3 intermediate revisions by 2 users not shown)
Line 2: Line 2:
'''88EDT''' is the [[Edt|equal division of the third harmonic]] into 88 parts of 21.6131 [[cent|cents]] each, corresponding to 55.5218 [[edo]] (similar to every second step of [[111edo]]). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103.
'''88EDT''' is the [[Edt|equal division of the third harmonic]] into 88 parts of 21.6131 [[cent|cents]] each, corresponding to 55.5218 [[edo]] (similar to every second step of [[111edo]]). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103.


88EDT is the 15th [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]].
88EDT is the largest EDT to not correspond to a [[val]] of some [[EDO]] that has a [[5L 2s|diatonic]] fifth, instead corresponding to both the [[55edo|55b]] val, with [[5edo]]'s fifth, and the [[56edo|56b]] val, with [[7edo]]'s fifth. It is also a [[the Riemann zeta function and tuning#Removing primes|no-twos zeta peak EDT]].


== Harmonics ==
== Harmonics ==
Line 22: Line 22:
== Intervals ==
== Intervals ==
{{Interval table}}
{{Interval table}}
[[Category:Edt]]
[[Category:Edonoi]]

Latest revision as of 19:24, 1 August 2025

← 87edt 88edt 89edt →
Prime factorization 23 × 11
Step size 21.6131 ¢ 
Octave 56\88edt (1210.34 ¢) (→ 7\11edt)
Consistency limit 3
Distinct consistency limit 3

88EDT is the equal division of the third harmonic into 88 parts of 21.6131 cents each, corresponding to 55.5218 edo (similar to every second step of 111edo). It is consistent to the no-twos 11-limit, tempering out 1331/1323, 16875/16807, and 216513/214375. In the 3.4.5.7.11 subgroup, it tempers out 176/175, 540/539, 1331/1323, and 5120/5103.

88EDT is the largest EDT to not correspond to a val of some EDO that has a diatonic fifth, instead corresponding to both the 55b val, with 5edo's fifth, and the 56b val, with 7edo's fifth. It is also a no-twos zeta peak EDT.

Harmonics

Approximation of prime harmonics in 88edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +10.34 +0.00 +1.78 +2.82 -1.60 -9.84 +1.22 +3.18 -3.38 +5.97 -1.43
Relative (%) +47.8 +0.0 +8.2 +13.1 -7.4 -45.5 +5.7 +14.7 -15.6 +27.6 -6.6
Steps
(reduced)
56
(56)
88
(0)
129
(41)
156
(68)
192
(16)
205
(29)
227
(51)
236
(60)
251
(75)
270
(6)
275
(11)
Approximation of prime harmonics in 88edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -5.15 -9.96 -5.97 -8.66 -0.53 +8.32 -6.17 +4.32 -9.62 +7.13 +0.06
Relative (%) -23.8 -46.1 -27.6 -40.1 -2.5 +38.5 -28.5 +20.0 -44.5 +33.0 +0.3
Steps
(reduced)
289
(25)
297
(33)
301
(37)
308
(44)
318
(54)
327
(63)
329
(65)
337
(73)
341
(77)
344
(80)
350
(86)

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 21.6 14.8
2 43.2 29.5
3 64.8 44.3 27/26
4 86.5 59.1 41/39
5 108.1 73.9 33/31
6 129.7 88.6
7 151.3 103.4
8 172.9 118.2 21/19
9 194.5 133 19/17
10 216.1 147.7 17/15
11 237.7 162.5 31/27
12 259.4 177.3 29/25
13 281 192
14 302.6 206.8 25/21, 31/26
15 324.2 221.6 35/29
16 345.8 236.4 11/9
17 367.4 251.1 21/17, 26/21
18 389 265.9
19 410.6 280.7 19/15, 33/26
20 432.3 295.5 9/7
21 453.9 310.2
22 475.5 325 25/19, 29/22
23 497.1 339.8
24 518.7 354.5 31/23
25 540.3 369.3 26/19
26 561.9 384.1
27 583.6 398.9 7/5
28 605.2 413.6
29 626.8 428.4 33/23
30 648.4 443.2
31 670 458 25/17
32 691.6 472.7
33 713.2 487.5
34 734.8 502.3 26/17, 29/19
35 756.5 517 17/11
36 778.1 531.8
37 799.7 546.6 27/17
38 821.3 561.4 37/23
39 842.9 576.1
40 864.5 590.9
41 886.1 605.7 5/3
42 907.8 620.5
43 929.4 635.2
44 951 650 26/15
45 972.6 664.8
46 994.2 679.5
47 1015.8 694.3 9/5
48 1037.4 709.1 31/17
49 1059 723.9 35/19
50 1080.7 738.6
51 1102.3 753.4 17/9
52 1123.9 768.2
53 1145.5 783 33/17
54 1167.1 797.7
55 1188.7 812.5
56 1210.3 827.3
57 1231.9 842
58 1253.6 856.8
59 1275.2 871.6 23/11
60 1296.8 886.4
61 1318.4 901.1 15/7
62 1340 915.9
63 1361.6 930.7
64 1383.2 945.5
65 1404.9 960.2
66 1426.5 975
67 1448.1 989.8
68 1469.7 1004.5 7/3
69 1491.3 1019.3 26/11
70 1512.9 1034.1
71 1534.5 1048.9 17/7
72 1556.1 1063.6 27/11
73 1577.8 1078.4
74 1599.4 1093.2
75 1621 1108
76 1642.6 1122.7
77 1664.2 1137.5
78 1685.8 1152.3
79 1707.4 1167
80 1729.1 1181.8 19/7
81 1750.7 1196.6
82 1772.3 1211.4
83 1793.9 1226.1 31/11
84 1815.5 1240.9
85 1837.1 1255.7 26/9
86 1858.7 1270.5
87 1880.3 1285.2
88 1902 1300 3/1