385edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 (talk | contribs)
m Skip disambiguation
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|385}}
{{ED intro}}


== Theory ==
== Theory ==
385edo has a reasonable approximation to the 11-limit, and perhaps beyond. The equal temperament [[tempering out|tempers out]] [[19683/19600]], [[589824/588245]], and [[703125/702464]] in the 7-limit; [[540/539]], [[8019/8000]], 43923/43904, 151263/151250, 160083/160000, 166698/166375, and 172032/171875 in the 11-limit. It [[support]]s [[hemipental]] and provides the [[optimal patent val]] for the 7-limit version thereof. Using the [[patent val]], it tempers out [[1575/1573]], [[1716/1715]], [[2200/2197]], [[4096/4095]], [[6656/6655]] and [[10648/10647]] in the 13-limit; and [[936/935]], [[1275/1274]], 1377/1375, and [[2601/2600]] in the 17-limit.  
385edo has a reasonable approximation to the 11-limit, and perhaps beyond. The equal temperament [[tempering out|tempers out]] [[19683/19600]], [[589824/588245]], and [[703125/702464]] in the 7-limit; [[540/539]], [[8019/8000]], 43923/43904, 151263/151250, 160083/160000, 166698/166375, and 172032/171875 in the 11-limit. It [[support]]s [[hemipental]] and provides the [[optimal patent val]] for the 7-limit version thereof. Using the [[patent val]], it tempers out [[1575/1573]], [[1716/1715]], [[2200/2197]], [[4096/4095]], [[6656/6655]], and [[10648/10647]] in the 13-limit; and [[936/935]], [[1275/1274]], 1377/1375, and [[2601/2600]] in the 17-limit.  


=== Prime harmonics ===
=== Prime harmonics ===
Line 13: Line 13:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
Line 53: Line 54:
| 540/539, 1575/1573, 2200/2197, 4096/4095, 8019/8000
| 540/539, 1575/1573, 2200/2197, 4096/4095, 8019/8000
| {{mapping| 385 610 894 1081 1332 1425 }}
| {{mapping| 385 610 894 1081 1332 1425 }}
| -0.0394
| −0.0394
| 0.2207
| 0.2207
| 7.08
| 7.08
Line 60: Line 61:
| 540/539, 936/935, 1377/1375, 1575/1573, 2200/2197, 4096/4095
| 540/539, 936/935, 1377/1375, 1575/1573, 2200/2197, 4096/4095
| {{mapping| 385 610 894 1081 1332 1425 1574 }}
| {{mapping| 385 610 894 1081 1332 1425 1574 }}
| -0.0693
| −0.0693
| 0.2171
| 0.2171
| 6.97
| 6.97
Line 67: Line 68:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 87: Line 89:
|-
|-
| 5
| 5
| 80\385<br>(3\385)
| 80\385<br />(3\385)
| 249.35<br>(9.35)
| 249.35<br />(9.35)
| 81/70<br>(176/175)
| 81/70<br />(176/175)
| [[Hemipental]]
| [[Hemipental]]
|-
|-
| 5
| 5
| 160\385<br>(6\385)
| 160\385<br />(6\385)
| 498.70<br>(18.70)
| 498.70<br />(18.70)
| 4/3<br>(81/80)
| 4/3<br />(81/80)
| [[Pental (temperament)|Pental]] (5-limit)
| [[Pental (temperament)|Pental]] (5-limit)
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Hemipental]]
[[Category:Hemipental]]

Latest revision as of 06:30, 21 February 2025

← 384edo 385edo 386edo →
Prime factorization 5 × 7 × 11
Step size 3.11688 ¢ 
Fifth 225\385 (701.299 ¢) (→ 45\77)
Semitones (A1:m2) 35:30 (109.1 ¢ : 93.51 ¢)
Consistency limit 7
Distinct consistency limit 7

385 equal divisions of the octave (abbreviated 385edo or 385ed2), also called 385-tone equal temperament (385tet) or 385 equal temperament (385et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 385 equal parts of about 3.12 ¢ each. Each step represents a frequency ratio of 21/385, or the 385th root of 2.

Theory

385edo has a reasonable approximation to the 11-limit, and perhaps beyond. The equal temperament tempers out 19683/19600, 589824/588245, and 703125/702464 in the 7-limit; 540/539, 8019/8000, 43923/43904, 151263/151250, 160083/160000, 166698/166375, and 172032/171875 in the 11-limit. It supports hemipental and provides the optimal patent val for the 7-limit version thereof. Using the patent val, it tempers out 1575/1573, 1716/1715, 2200/2197, 4096/4095, 6656/6655, and 10648/10647 in the 13-limit; and 936/935, 1275/1274, 1377/1375, and 2601/2600 in the 17-limit.

Prime harmonics

Approximation of prime harmonics in 385edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.66 +0.18 +0.52 +0.37 +1.03 +1.02 -1.41 +1.34 -1.01 -1.14
Relative (%) +0.0 -21.1 +5.8 +16.8 +11.9 +33.1 +32.7 -45.2 +42.9 -32.3 -36.6
Steps
(reduced)
385
(0)
610
(225)
894
(124)
1081
(311)
1332
(177)
1425
(270)
1574
(34)
1635
(95)
1742
(202)
1870
(330)
1907
(367)

Subsets and supersets

Since 385 factors into 5 × 7 × 11, 385edo has subset edos 5, 7, 11, 35, 55, and 77.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-122 77 [385 610]] +0.2070 0.2071 6.64
2.3.5 [-28 25 -5, [38 -2 -15 [385 610 894]] +0.1122 0.2158 6.92
2.3.5.7 19683/19600, 589824/588245, 703125/702464 [385 610 894 1081]] +0.0374 0.2274 7.30
2.3.5.7.11 540/539, 8019/8000, 151263/151250, 172032/171875 [385 610 894 1081 1332]] +0.0085 0.2114 6.78
2.3.5.7.11.13 540/539, 1575/1573, 2200/2197, 4096/4095, 8019/8000 [385 610 894 1081 1332 1425]] −0.0394 0.2207 7.08
2.3.5.7.11.13.17 540/539, 936/935, 1377/1375, 1575/1573, 2200/2197, 4096/4095 [385 610 894 1081 1332 1425 1574]] −0.0693 0.2171 6.97

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 62\385 193.25 262144/234375 Luna
1 162/385 504.94 4/3 Countermeantone
5 80\385
(3\385)
249.35
(9.35)
81/70
(176/175)
Hemipental
5 160\385
(6\385)
498.70
(18.70)
4/3
(81/80)
Pental (5-limit)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct