Diminished family: Difference between revisions
→Diminished: copy from jubilismic clan |
Post-move cleanup |
||
(23 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
The ''' | {{Technical data page}} | ||
The '''diminished family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] the major diesis a.k.a. diminished comma, [[648/625]], the amount by which four [[6/5]] minor thirds exceed an [[octave]], and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as [[12edo]]. | |||
== | == Diminished == | ||
Subgroup: 2.3.5 | {{Main| Diminished (temperament) }} | ||
The [[generator]] of diminished can be taken as a fifth or a semitone, and 12edo, with its excellent fifth, is an obvious tuning, though a flatter fifth might be preferred to go with the flat minor third. Its [[ploidacot]] is tetraploid monocot. | |||
[[Subgroup]]: 2.3.5 | |||
[[Comma]]: 648/625 | [[Comma list]]: 648/625 | ||
{{Mapping|legend=1| 4 0 3 | 0 1 1 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~6/5 = 299.6476{{c}}, ~3/2 = 698.6854{{c}} (~25/24 = 99.3903{{c}}) | |||
: [[error map]]: {{val| -1.410 -4.679 +9.905 }} | |||
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~3/2 = 698.2660{{c}} (~25/24 = 98.2660{{c}}) | |||
: error map: {{val| 0.000 -3.689 +11.952 }} | |||
{{ | {{Optimal ET sequence|legend=1| 4, 8, 12 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 1.11 | ||
== Septimal diminished == | |||
{{Main| Diminished (temperament) }} | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 36/35, 50/49 | [[Comma list]]: 36/35, 50/49 | ||
{{Mapping|legend=1| 4 0 3 5 | 0 1 1 1 }} | |||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~6/5 = 299.0347{{c}}, ~3/2 = 697.2727{{c}} (~21/20 = 99.2032{{c}}) | |||
: [[error map]]: {{val| -3.861 -8.543 +4.202 +19.759 }} | |||
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~3/2 = 695.9619{{c}} (~21/20 = 95.9619{{c}}) | |||
: error map: {{val| 0.000 -5.993 +9.648 +27.136 }} | |||
{{Optimal ET sequence|legend=1| 4, 8d, 12 }} | |||
[[Badness]] (Sintel): 0.567 | |||
[[Badness]]: 0. | |||
=== 11-limit === | === 11-limit === | ||
Line 34: | Line 47: | ||
Comma list: 36/35, 50/49, 56/55 | Comma list: 36/35, 50/49, 56/55 | ||
Mapping: | Mapping: {{mapping| 4 0 3 5 14 | 0 1 1 1 0 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~6/5 = 297.8458{{c}}, ~3/2 = 703.9277{{c}} (~15/14 = 108.2361{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 703.5558{{c}} (~15/14 = 103.5558{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 4, 8d, 12, 32cddee, 44cddeee }} | ||
Badness: 0. | Badness (Sintel): 0.732 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 49: | Line 62: | ||
Comma list: 36/35, 40/39, 50/49, 66/65 | Comma list: 36/35, 40/39, 50/49, 66/65 | ||
Mapping: | Mapping: {{mapping| 4 0 3 5 14 15 | 0 1 1 1 0 0 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~6/5 = 297.2520{{c}}, ~3/2 = 707.2352{{c}} (~15/14 = 112.7312{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 708.4648{{c}} (~15/14 = 108.4648{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 4, 8d, 12f, 20cdef, 32cddeefff }} | ||
Badness: 0. | Badness (Sintel): 0.806 | ||
=== Demolished === | === Demolished === | ||
Line 64: | Line 77: | ||
Comma list: 36/35, 45/44, 50/49 | Comma list: 36/35, 45/44, 50/49 | ||
Mapping: | Mapping: {{mapping| 4 0 3 5 -5 | 0 1 1 1 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~6/5 = 299.6308{{c}}, ~3/2 = 689.0322{{c}} (~21/20 = 89.7707{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~3/2 = 688.9304{{c}} (~21/20 = 88.9304{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 4e, 8dee, 12, 28 }} | ||
Badness: 0. | Badness (Smith): 0.879 | ||
=== Cohedim === | === Cohedim === | ||
This | This extension has been documented in Graham Breed's temperament finder as ''hemidim'', the same name as [[#Hemidim|11-limit 4e & 24 and 13-limit 4ef & 24]]. For the 11-limit 8bce & 12 temperament, ''cohedim'' arguably makes more sense. Its ploidacot is tetraploid alpha-dicot. | ||
Subgroup: 2.3.5.7.11 | Subgroup: 2.3.5.7.11 | ||
Line 79: | Line 94: | ||
Comma list: 36/35, 50/49, 125/121 | Comma list: 36/35, 50/49, 125/121 | ||
Mapping: | Mapping: {{mapping| 4 1 4 6 6 | 0 2 2 2 3 }} | ||
: mapping generators: ~6/5, ~11/7 | |||
Optimal | Optimal tunings: | ||
* WE: ~6/5 = 298.7799{{c}}, ~11/7 = 795.0744{{c}} (~12/11 = 101.2653{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~11/7 = 796.0102{{c}} (~12/11 = 103.9898{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 8bce, 12 }} | ||
Badness: | Badness (Sintel): 1.82 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 94: | Line 111: | ||
Comma list: 36/35, 50/49, 66/65, 125/121 | Comma list: 36/35, 50/49, 66/65, 125/121 | ||
Mapping: | Mapping: {{mapping| 4 1 4 6 6 7 | 0 2 2 2 3 3 }} | ||
Optimal | Optimal tunings: | ||
* WE: ~6/5 = 298.4646{{c}}, ~11/7 = 793.6185{{c}} (~12/11 = 101.7754{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~11/7 = 794.7323{{c}} (~12/11 = 105.2677{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 8bcef, 12f }} | ||
Badness: | Badness (Sintel): 1.72 | ||
== Hemidim == | == Hemidim == | ||
Subgroup: 2.3.5.7 | Hemidim tempers out 49/48 and may be described as the {{nowrap| 4 & 24 }} temperament. Its ploidcot is tetraploid dicot. | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 49/48, 648/625 | [[Comma list]]: 49/48, 648/625 | ||
{{Mapping|legend=1| 4 0 3 8 | 0 2 2 1 }} | |||
: mapping generators: ~6/5, ~7/4 | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~6/5 = 300.5053{{c}}, ~7/4 = 949.0409{{c}} (~36/35 = 47.5250{{c}}) | |||
: [[error map]]: {{val| +2.021 -3.873 +13.284 -15.743 }} | |||
* [[CWE]]: ~6/5 = 300.0000{{c}}, ~7/4 = 948.2575{{c}} (~36/35 = 48.2575{{c}}) | |||
: error map: {{val| 0.000 -5.440 +10.201 -20.568 }} | |||
{{ | {{Optimal ET sequence|legend=1| 4, …, 20c, 24 }} | ||
[[Badness]]: | [[Badness]] (Sintel): 2.19 | ||
=== 11-limit === | === 11-limit === | ||
Line 122: | Line 147: | ||
Comma list: 49/48, 77/75, 243/242 | Comma list: 49/48, 77/75, 243/242 | ||
Mapping: | Mapping: {{mapping| 4 0 3 8 -2 | 0 2 2 1 5 }} | ||
Optimal tunings: | |||
* WE: ~6/5 = 300.4282{{c}}, ~7/4 = 949.6958{{c}} (~36/35 = 48.4112{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~7/4 = 948.9065{{c}} (~36/35 = 48.9065{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 4e, 20ce, 24 }} | ||
Badness: | Badness (Sintel): 1.87 | ||
=== 13-limit === | === 13-limit === | ||
Line 135: | Line 162: | ||
Comma list: 49/48, 66/65, 77/75, 243/242 | Comma list: 49/48, 66/65, 77/75, 243/242 | ||
Mapping: | Mapping: {{mapping| 4 0 3 8 -2 -1 | 0 2 2 1 5 5 }} | ||
Optimal tunings: | |||
* WE: ~6/5 = 300.4282{{c}}, ~7/4 = 949.2440{{c}} (~36/35 = 47.8487{{c}}) | |||
* CWE: ~6/5 = 300.0000{{c}}, ~7/4 = 948.3581{{c}} (~36/35 = 48.3581{{c}}) | |||
{{Optimal ET sequence|legend=0| 4ef, 24 }} | |||
Badness (Sintel): 1.61 | |||
== Octonion == | |||
Octonion tempers out 245/243, and may be described as the {{nowrap| 8d & 24 }} temperament. Its ploidacot is octoploid monocot. | |||
It was formerly known as ''semidim'' but renamed to avoid confusion with another temperament of the same name. | |||
Subgroup: 2.3.5.7 | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 392/375 | [[Comma list]]: 245/243, 392/375 | ||
{{Mapping|legend=1| 8 0 6 -3 | 0 1 1 2 }} | |||
: mapping generators: ~15/14, ~3 | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~15/14 = 149.6673{{c}}, ~3/2 = 705.4455{{c}} (~36/35 = 42.8910{{c}}) | |||
: [[error map]]: {{val| -2.662 +0.828 +14.474 -12.260 }} | |||
* [[CWE]]: ~15/14 = 150.0000{{c}}, ~3/2 = 704.9636{{c}} (~36/35 = 45.0364{{c}}) | |||
: error map: {{val| 0.000 +3.008 +18.650 -8.899 }} | |||
{{ | {{Optimal ET sequence|legend=1| 8d, 16d, 24, 32c }} | ||
[[Badness]]: | [[Badness]] (Sintel): 2.72 | ||
=== 11-limit === | === 11-limit === | ||
Line 163: | Line 200: | ||
Comma list: 56/55, 77/75, 245/243 | Comma list: 56/55, 77/75, 245/243 | ||
Mapping: | Mapping: {{mapping| 8 0 6 -3 15 | 0 1 1 2 1 }} | ||
Optimal tunings: | |||
* WE: ~12/11 = 149.7102{{c}}, ~3/2 = 705.2799{{c}} (~36/35 = 43.2712{{c}}) | |||
* CWE: ~12/11 = 150.0000{{c}}, ~3/2 = 704.9285{{c}} (~36/35 = 45.0715{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 8d, 16d, 24, 32c }} | ||
Badness: | Badness (Sintel): 1.57 | ||
=== 13-limit === | === 13-limit === | ||
Line 176: | Line 215: | ||
Comma list: 56/55, 66/65, 77/75, 507/500 | Comma list: 56/55, 66/65, 77/75, 507/500 | ||
Mapping: | Mapping: {{mapping| 8 0 6 -3 15 17 | 0 1 1 2 1 1 }} | ||
Optimal tunings: | |||
* WE: ~12/11 = 149.6311{{c}}, ~3/2 = 705.6367{{c}} (~36/35 = 42.5188{{c}}) | |||
* CWE: ~12/11 = 150.0000{{c}}, ~3/2 = 705.2777{{c}} (~36/35 = 44.7223{{c}}) | |||
Optimal | {{Optimal ET sequence|legend=0| 8d, 16d, 24, 32cf }} | ||
Badness: | Badness (Sintel): 1.26 | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category: | [[Category:Pages with mostly numerical content]] | ||
[[Category:Diminished]] | [[Category:Diminished family| ]] <!-- main article --> | ||
[[Category:Diminished| ]] <!-- key article --> | |||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Latest revision as of 12:13, 21 August 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The diminished family of temperaments tempers out the major diesis a.k.a. diminished comma, 648/625, the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as 12edo.
Diminished
The generator of diminished can be taken as a fifth or a semitone, and 12edo, with its excellent fifth, is an obvious tuning, though a flatter fifth might be preferred to go with the flat minor third. Its ploidacot is tetraploid monocot.
Subgroup: 2.3.5
Comma list: 648/625
Mapping: [⟨4 0 3], ⟨0 1 1]]
- WE: ~6/5 = 299.6476 ¢, ~3/2 = 698.6854 ¢ (~25/24 = 99.3903 ¢)
- error map: ⟨-1.410 -4.679 +9.905]
- CWE: ~6/5 = 300.0000 ¢, ~3/2 = 698.2660 ¢ (~25/24 = 98.2660 ¢)
- error map: ⟨0.000 -3.689 +11.952]
Optimal ET sequence: 4, 8, 12
Badness (Sintel): 1.11
Septimal diminished
Subgroup: 2.3.5.7
Comma list: 36/35, 50/49
Mapping: [⟨4 0 3 5], ⟨0 1 1 1]]
- WE: ~6/5 = 299.0347 ¢, ~3/2 = 697.2727 ¢ (~21/20 = 99.2032 ¢)
- error map: ⟨-3.861 -8.543 +4.202 +19.759]
- CWE: ~6/5 = 300.0000 ¢, ~3/2 = 695.9619 ¢ (~21/20 = 95.9619 ¢)
- error map: ⟨0.000 -5.993 +9.648 +27.136]
Optimal ET sequence: 4, 8d, 12
Badness (Sintel): 0.567
11-limit
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 56/55
Mapping: [⟨4 0 3 5 14], ⟨0 1 1 1 0]]
Optimal tunings:
- WE: ~6/5 = 297.8458 ¢, ~3/2 = 703.9277 ¢ (~15/14 = 108.2361 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~3/2 = 703.5558 ¢ (~15/14 = 103.5558 ¢)
Optimal ET sequence: 4, 8d, 12, 32cddee, 44cddeee
Badness (Sintel): 0.732
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 40/39, 50/49, 66/65
Mapping: [⟨4 0 3 5 14 15], ⟨0 1 1 1 0 0]]
Optimal tunings:
- WE: ~6/5 = 297.2520 ¢, ~3/2 = 707.2352 ¢ (~15/14 = 112.7312 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~3/2 = 708.4648 ¢ (~15/14 = 108.4648 ¢)
Optimal ET sequence: 4, 8d, 12f, 20cdef, 32cddeefff
Badness (Sintel): 0.806
Demolished
Subgroup: 2.3.5.7.11
Comma list: 36/35, 45/44, 50/49
Mapping: [⟨4 0 3 5 -5], ⟨0 1 1 1 3]]
Optimal tunings:
- WE: ~6/5 = 299.6308 ¢, ~3/2 = 689.0322 ¢ (~21/20 = 89.7707 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~3/2 = 688.9304 ¢ (~21/20 = 88.9304 ¢)
Optimal ET sequence: 4e, 8dee, 12, 28
Badness (Smith): 0.879
Cohedim
This extension has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e & 24 and 13-limit 4ef & 24. For the 11-limit 8bce & 12 temperament, cohedim arguably makes more sense. Its ploidacot is tetraploid alpha-dicot.
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 125/121
Mapping: [⟨4 1 4 6 6], ⟨0 2 2 2 3]]
- mapping generators: ~6/5, ~11/7
Optimal tunings:
- WE: ~6/5 = 298.7799 ¢, ~11/7 = 795.0744 ¢ (~12/11 = 101.2653 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~11/7 = 796.0102 ¢ (~12/11 = 103.9898 ¢)
Badness (Sintel): 1.82
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 36/35, 50/49, 66/65, 125/121
Mapping: [⟨4 1 4 6 6 7], ⟨0 2 2 2 3 3]]
Optimal tunings:
- WE: ~6/5 = 298.4646 ¢, ~11/7 = 793.6185 ¢ (~12/11 = 101.7754 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~11/7 = 794.7323 ¢ (~12/11 = 105.2677 ¢)
Optimal ET sequence: 8bcef, 12f
Badness (Sintel): 1.72
Hemidim
Hemidim tempers out 49/48 and may be described as the 4 & 24 temperament. Its ploidcot is tetraploid dicot.
Subgroup: 2.3.5.7
Comma list: 49/48, 648/625
Mapping: [⟨4 0 3 8], ⟨0 2 2 1]]
- mapping generators: ~6/5, ~7/4
- WE: ~6/5 = 300.5053 ¢, ~7/4 = 949.0409 ¢ (~36/35 = 47.5250 ¢)
- error map: ⟨+2.021 -3.873 +13.284 -15.743]
- CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.2575 ¢ (~36/35 = 48.2575 ¢)
- error map: ⟨0.000 -5.440 +10.201 -20.568]
Optimal ET sequence: 4, …, 20c, 24
Badness (Sintel): 2.19
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 77/75, 243/242
Mapping: [⟨4 0 3 8 -2], ⟨0 2 2 1 5]]
Optimal tunings:
- WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.6958 ¢ (~36/35 = 48.4112 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.9065 ¢ (~36/35 = 48.9065 ¢)
Optimal ET sequence: 4e, 20ce, 24
Badness (Sintel): 1.87
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 66/65, 77/75, 243/242
Mapping: [⟨4 0 3 8 -2 -1], ⟨0 2 2 1 5 5]]
Optimal tunings:
- WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.2440 ¢ (~36/35 = 47.8487 ¢)
- CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.3581 ¢ (~36/35 = 48.3581 ¢)
Badness (Sintel): 1.61
Octonion
Octonion tempers out 245/243, and may be described as the 8d & 24 temperament. Its ploidacot is octoploid monocot.
It was formerly known as semidim but renamed to avoid confusion with another temperament of the same name.
Subgroup: 2.3.5.7
Comma list: 245/243, 392/375
Mapping: [⟨8 0 6 -3], ⟨0 1 1 2]]
- mapping generators: ~15/14, ~3
- WE: ~15/14 = 149.6673 ¢, ~3/2 = 705.4455 ¢ (~36/35 = 42.8910 ¢)
- error map: ⟨-2.662 +0.828 +14.474 -12.260]
- CWE: ~15/14 = 150.0000 ¢, ~3/2 = 704.9636 ¢ (~36/35 = 45.0364 ¢)
- error map: ⟨0.000 +3.008 +18.650 -8.899]
Optimal ET sequence: 8d, 16d, 24, 32c
Badness (Sintel): 2.72
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 77/75, 245/243
Mapping: [⟨8 0 6 -3 15], ⟨0 1 1 2 1]]
Optimal tunings:
- WE: ~12/11 = 149.7102 ¢, ~3/2 = 705.2799 ¢ (~36/35 = 43.2712 ¢)
- CWE: ~12/11 = 150.0000 ¢, ~3/2 = 704.9285 ¢ (~36/35 = 45.0715 ¢)
Optimal ET sequence: 8d, 16d, 24, 32c
Badness (Sintel): 1.57
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 66/65, 77/75, 507/500
Mapping: [⟨8 0 6 -3 15 17], ⟨0 1 1 2 1 1]]
Optimal tunings:
- WE: ~12/11 = 149.6311 ¢, ~3/2 = 705.6367 ¢ (~36/35 = 42.5188 ¢)
- CWE: ~12/11 = 150.0000 ¢, ~3/2 = 705.2777 ¢ (~36/35 = 44.7223 ¢)
Optimal ET sequence: 8d, 16d, 24, 32cf
Badness (Sintel): 1.26