Dicot family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cmloegcmluin (talk | contribs)
use wedgie monzo and val templates
+ short intro to each temp
 
(48 intermediate revisions by 12 users not shown)
Line 1: Line 1:
The [[5-limit]] parent [[comma]] for the dicot family is 25/24, the [[chromatic semitone]]. Its [[monzo]] is {{monzo| -3 -1 2 }}, and flipping that yields {{wedgie| 2 1 -3}} for the [[wedgie]]. This tells us the generator is a third (major and minor mean the same thing), and that two thirds gives a fifth. In fact, (5/4)^2 = 3/2 * 25/24. Possible tunings for dicot are [[7edo]], [[24edo]] using the val {{val|24 38 55}} (24c) and [[31edo]] using the val {{val|31 49 71}} (31c). In a sense, what dicot is all about is using neutral thirds and pretending that's 5-limit, and like any temperament which seems to involve pretending, dicot is at the edge of what can sensibly be called a temperament at all. In other words, it is an [[exotemperament]].
{{Technical data page}}
The '''dicot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] [[25/24]], the classical chromatic semitone.  


==Seven limit children==
== Dicot ==
The second comma of the [[Normal_lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot, with wedgie {{wedgie|2 1 3 -3 -1 4}} adds 36/35, sharp with wedgie {{wedgie|2 1 6 -3 4 11}} adds 28/27, and dichotic with wedgie {{wedgie|2 1 -4 -3 -12 -12}} ads 64/63, all retaining the same period and generator. Decimal with wedgie {{wedgie|4 2 2 -6 -8 -1}} adds 49/48, sidi with wedgie {{wedgie|4 2 9 -3 6 15}} adds 245/243, and jamesbond with wedgie {{wedgie|0 0 7 0 11 16}} adds 81/80. Here decimal divides the period to 1/2 octave, and sidi uses 9/7 as a generator, with two of them making up the combined 5/3 and 8/5 neutral sixth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
The head of this family, dicot, is [[generator|generated]] by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, {{nowrap|(5/4)<sup>2</sup> {{=}} (3/2)(25/24)}}. Its [[ploidacot]] is the same as its name, dicot.  


=Dicot=
Possible tunings for dicot are [[7edo]], [[10edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c), and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an [[exotemperament]].
[[Comma]]: 25/24


[[POTE tuning|POTE generator]]: ~5/4 = 348.594
[[Subgroup]]: 2.3.5


[[Map]]: [{{val|1 1 2}}, {{val|0 2 1}}]
[[Comma list]]: 25/24


{{Vals|legend=1| 3, 4, 7, 17, 24c, 31c }}
{{Mapping|legend=1| 1 1 2 | 0 2 1 }}


[[Badness]]: 0.013028
: mapping generators: ~2, ~5/4
 
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1206.283{{c}}, ~6/5 = 350.420{{c}}
: [[error map]]: {{val| +6.283 +5.167 -23.328 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 351.086{{c}}
: error map: {{val| 0.000 +0.216 -35.228 }}
 
[[Tuning ranges]]:
* [[5-odd-limit]] [[diamond monotone]]: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
* 5-odd-limit [[diamond tradeoff]]: ~5/4 = [315.641, 386.314] (full comma to untempered)
 
{{Optimal ET sequence|legend=1| 3, 4, 7, 17, 24c, 31c }}
 
[[Badness]] (Sintel): 0.306
 
=== Overview to extensions ===
The second comma of the [[normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot adds [[36/35]], flattie adds [[21/20]], sharpie adds [[28/27]], and dichotic adds [[64/63]], all retaining the same period and generator.
 
Decimal adds [[49/48]], sidi adds [[245/243]], and jamesbond adds [[16/15]]. Here decimal divides the [[period]] to a [[sqrt(2)|semi-octave]], and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
 
Temperaments discussed elsewhere are:
* ''[[Geryon]]'' → [[Very low accuracy temperaments #Geryon|Very low accuracy temperaments]]
* ''[[Jamesbond]]'' → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]]
 
The rest are considered below.
 
=== 2.3.5.11 subgroup ===
The 2.3.5.11-subgroup extension maps [[11/9]]~[[27/22]] to the neutral third. As such, it is related to most of the septimal extensions.
 
Subgroup: 2.3.5.11
 
Comma list: 25/24, 45/44
 
Subgroup val mapping: {{mapping| 1 1 2 2 | 0 2 1 5 }}
 
Gencom mapping: {{mapping| 1 1 2 0 2 | 0 2 1 0 5 }}
 
Optimal tunings:
* WE: ~2 = 1206.750{{c}}, ~6/5 = 348.684{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 348.954{{c}}
 
{{Optimal ET sequence|legend=0| 3e, 4e, 7, 24c, 31c }}
 
Badness (Sintel): 0.370
 
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13
 
Comma list: 25/24, 40/39, 45/44
 
Subgroup val mapping: {{mapping| 1 1 2 2 4 | 0 2 1 5 -1 }}
 
Gencom mapping: {{mapping| 1 1 2 0 2 4 | 0 2 1 0 5 -1 }}
 
Optimal tunings:
* WE: ~2 = 1202.433{{c}}, ~5/4 = 351.237{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 350.978{{c}}
 
{{Optimal ET sequence|legend=0| 3e, 7, 17 }}
 
Badness (Sintel): 0.536
 
== Septimal dicot ==
Septimal dicot is the extension where [[7/6]] and [[9/7]] are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy.
 
[[Subgroup]]: 2.3.5.7


==7-limit==
[[Comma list]]: 15/14, 25/24
[[Comma list]]: 15/14, 25/24


[[POTE tuning|POTE generator]]: ~5/4 = 336.381
{{Mapping|legend=1| 1 1 2 2 | 0 2 1 3 }}


[[Map]]: [{{val|1 1 2 2}}, {{val|0 2 1 3}}]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1205.532{{c}}, ~6/5 = 337.931{{c}}
: [[error map]]: {{val| +5.532 -20.561 -37.319 +56.032 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 338.561{{c}}
: error map: {{val| 0.000 -24.834 -47.753 +46.856 }}


Wedgie: {{wedgie|2 1 3 -3 -1 4}}
{{Optimal ET sequence|legend=1| 3d, 4, 7 }}


{{Vals|legend=1| 3d, 4, 7, 18bc, 25bccd }}
[[Badness]] (Sintel): 0.504


[[Badness]]: 0.019935
=== 11-limit ===
Subgroup: 2.3.5.7.11


==11-limit==
Comma list: 15/14, 22/21, 25/24
Comma list: 15/14, 22/21, 25/24


POTE generator: ~5/4 = 342.125
Mapping: {{mapping| 1 1 2 2 2 | 0 2 1 3 5 }}
 
Optimal tunings:
* WE: ~2 = 1203.346{{c}}, ~6/5 = 343.078{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 343.260{{c}}


Map: [{{val|1 1 2 2 2}}, {{val|0 2 1 3 5}}]
{{Optimal ET sequence|legend=0| 3de, 4e, 7 }}


Vals: {{Vals| 3de, 4e, 7 }}
Badness (Sintel): 0.656


Badness: 0.019854
=== Eudicot ===
Subgroup: 2.3.5.7.11


==Eudicot==
Comma list: 15/14, 25/24, 33/32
Comma list: 15/14, 25/24, 33/32


POTE generator: ~5/4 = 336.051
Mapping: {{mapping| 1 1 2 2 4 | 0 2 1 3 -2 }}
 
Optimal tunings:
* WE: ~2 = 1205.828{{c}}, ~6/5 = 337.683{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 336.909{{c}}


Map: [{{val|1 1 2 2 4}}, {{val|0 2 1 3 -2}}]
{{Optimal ET sequence|legend=0| 3d, 4, 7, 18bc, 25bccd }}


Vals: {{Vals| 3d, 4, 7, 18bc, 25bccd }}
Badness (Sintel): 0.896


Badness: 0.027114
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


===13-limit===
Comma list: 15/14, 25/24, 33/32, 40/39
Comma list: 15/14, 25/24, 33/32, 40/39


POTE generator: ~5/4 = 338.846
Mapping: {{mapping| 1 1 2 2 4 4 | 0 2 1 3 -2 -1 }}
 
Optimal tunings:
* WE: ~2 = 1202.660{{c}}, ~6/5 = 339.597{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 339.104{{c}}
 
{{Optimal ET sequence|legend=0| 3d, 4, 7 }}


Map: [{{val|1 1 2 2 4 4}}, {{val|0 2 1 3 -2 -1}}]
Badness (Sintel): 0.985


Vals: {{Vals| 3d, 4, 7, 25bccd, 32bccddef, 39bcccdddef }}
== Flattie ==
This temperament used to be known as ''flat''. Unlike septimal dicot where 7/6 is added to the neutral third, here [[8/7]] is added instead.


Badness: 0.023828
[[Subgroup]]: 2.3.5.7


=Flat=
[[Comma list]]: 21/20, 25/24
[[Comma list]]: 21/20, 25/24


[[POTE tuning|POTE generator]]: ~5/4 = 331.916
{{Mapping|legend=1| 1 1 2 3 | 0 2 1 -1 }}


[[Map]]: [{{val|1 1 2 3}}, {{val|0 2 1 -1}}]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1220.466{{c}}, ~6/5 = 337.577{{c}}
: [[error map]]: {{val| +20.466 -6.335 -7.804 -45.004 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 335.391{{c}}
: error map: {{val| 0.000 -31.173 -50.922 -104.217 }}


Wedgie: {{wedgie|2 1 -1 -3 -7 -5}}
{{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }}


{{Vals|legend=1| 3, 4, 7d, 11cd, 18bcddd }}
[[Badness]] (Sintel): 0.642


[[Badness]]: 0.025381
=== 11-limit ===
Subgroup: 2.3.5.7.11


==11-limit==
Comma list: 21/20, 25/24, 33/32
Comma list: 21/20, 25/24, 33/32


POTE generator: ~5/4 = 337.532
Mapping: {{mapping| 1 1 2 3 4 | 0 2 1 -1 -2 }}
 
Optimal tunings:
* WE: ~2 = 1216.069{{c}}, ~6/5 = 342.052{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 338.467{{c}}


Map: [{{val|1 1 2 3 4}}, {{val|0 2 1 -1 -2}}]
{{Optimal ET sequence|legend=0| 3, 4, 7d }}


Vals: {{Vals| 3, 4, 7d }}
Badness (Sintel): 0.826


Badness: 0.024988
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


==13-limit==
Comma list: 14/13, 21/20, 25/24, 33/32
Comma list: 14/13, 21/20, 25/24, 33/32


POTE generator: ~5/4 = 341.023
Mapping: {{mapping| 1 1 2 3 4 4 | 0 2 1 -1 -2 -1 }}
 
Optimal tunings:
* WE: ~2 = 1211.546{{c}}, ~6/5 = 344.304{{c}}
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 341.373{{c}}


Map: [{{val|1 1 2 3 4 4}}, {{val|0 2 1 -1 -2 -1}}]
{{Optimal ET sequence|legend=0| 3, 4, 7d }}


Vals: {{Vals| 3, 4, 7d }}
Badness (Sintel): 0.968


Badness: 0.023420
== Sharpie ==
This temperament used to be known as ''sharp''. This is where you find 7/6 at the major second and [[7/4]] at the major sixth.
 
[[Subgroup]]: 2.3.5.7


=Sharp=
[[Comma list]]: 25/24, 28/27
[[Comma list]]: 25/24, 28/27


[[POTE tuning|POTE generator]]: ~5/4 = 357.938
{{Mapping|legend=1| 1 1 2 1 | 0 2 1 6 }}


[[Map]]: [{{val|1 1 2 1}}, {{val|0 2 1 6}}]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1202.488{{c}}, ~5/4 = 358.680{{c}}
: [[error map]]: {{val| +2.488 +17.893 -22.658 -14.258 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 358.495{{c}}
: error map: {{val| 0.000 +15.035 -27.818 -17.854 }}


Wedgie: {{wedgie|2 1 6 -3 4 11}}
{{Optimal ET sequence|legend=1| 3d, 7d, 10 }}


{{Vals|legend=1| 3d, 7d, 10, 37cd, 47bccd, 57bccdd }}
[[Badness]] (Sintel): 0.732


[[Badness]]: 0.028942
=== 11-limit ===
Subgroup: 2.3.5.7.11


==11-limit==
Comma list: 25/24, 28/27, 35/33
Comma list: 25/24, 28/27, 35/33


POTE generator: ~5/4 = 356.106
Mapping: {{mapping| 1 1 2 1 2 | 0 2 1 6 5 }}


Map: [{{val|1 1 2 1 2}}, {{val|0 2 1 6 5}}]
Optimal tunings:  
* WE: ~2 = 1201.518{{c}}, ~5/4 = 356.557{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 356.457{{c}}


Vals: {{Vals| 3de, 7d, 10, 17d, 27cde }}
{{Optimal ET sequence|legend=0| 3de, 7d, 10, 17d }}


Badness: 0.022366
Badness (Sintel): 0.739


=Decimal=
== Dichotic ==
[[Comma list]]: 25/24, 49/48
In dichotic, 7/4 is found at a stack of two perfect fourths.


[[POTE tuning|POTE generator]]: ~7/6 = 251.557
[[Subgroup]]: 2.3.5.7


[[Map]]: [{{val|2 0 3 4}}, {{val|0 2 1 1}}]
[[Comma list]]: 25/24, 64/63


Wedgie: {{wedgie|4 2 2 -6 -8 -1}}
{{Mapping|legend=1| 1 1 2 4 | 0 2 1 -4 }}


{{Vals|legend=1| 4, 10, 14c, 24c, 38ccd, 62cccdd }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1200.802{{c}}, ~5/4 = 356.502{{c}}
: [[error map]]: {{val| +0.802 +11.851 -28.208 +8.374 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 356.275{{c}}
: error map: {{val| 0.000 +10.595 -30.039 +6.074 }}


[[Badness]]: 0.028334
{{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c }}


==11-limit==
[[Badness]] (Sintel): 0.951
Comma list: 25/24, 45/44, 49/48


POTE generator: ~7/6 = 253.493
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [{{val|2 0 3 4 -1}}, {{val|0 2 1 1 5}}]
Comma list: 25/24, 45/44, 64/63


Vals: {{Vals| 10, 14c, 24c, 38ccd, 52cccde }}
Mapping: {{mapping| 1 1 2 4 2 | 0 2 1 -4 5 }}


Badness: 0.026712
Optimal tunings:  
* WE: ~2 = 1199.504{{c}}, ~5/4 = 354.115{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.236{{c}}


==Decimated==
{{Optimal ET sequence|legend=0| 7, 10, 17 }}
Comma list: 25/24, 33/32, 49/48


POTE generator: ~7/6 = 255.066
Badness (Sintel): 1.01


Map: [{{val|2 0 3 4 10}}, {{val|0 2 1 1 -2}}]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Vals: {{Vals| 4, 10e, 14c }}
Comma list: 25/24, 40/39, 45/44, 64/63


Badness: 0.031456
Mapping: {{mapping| 1 1 2 4 2 4 | 0 2 1 -4 5 -1 }}


==Decibel==
Optimal tunings:
Comma list: 25/24, 35/33, 49/48
* WE: ~2 = 1199.289{{c}}, ~5/4 = 354.156{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.340{{c}}


POTE generator: ~8/7 = 243.493
{{Optimal ET sequence|legend=0| 7, 10, 17, 27ce, 44cce }}


Map: [{{val|2 0 3 4 7}}, {{val|0 2 1 1 0}}]
Badness (Sintel): 0.896


Vals: {{Vals| 4, 6, 10 }}
=== Dichotomic ===
Subgroup: 2.3.5.7.11


Badness: 0.032385
Comma list: 22/21, 25/24, 33/32


=Dichotic=
Mapping: {{mapping| 1 1 2 4 4 | 0 2 1 -4 -2 }}
[[Comma list]]: 25/24, 64/63


[[POTE tuning|POTE generator]]: ~5/4 = 356.264
Optimal tunings:  
* WE: ~2 = 1203.949{{c}}, ~5/4 = 355.239{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.024{{c}}


[[Map]]: [{{val|1 1 2 4}}, {{val|0 2 1 -4}}]
{{Optimal ET sequence|legend=0| 3, 7, 10e }}


Wedgie: {{wedgie|2 1 -4 -3 -12 -12}}
Badness (Sintel): 1.05


{{Vals|legend=1| 3, 7, 10, 17, 27c, 37c, 64bccc }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Badness]]: 0.037565
Comma list: 22/21, 25/24, 33/32, 40/39


==11-limit==
Mapping: {{mapping| 1 1 2 4 4 4 | 0 2 1 -4 -2 -1 }}
Comma list: 25/24, 45/44, 64/63


POTE generator: ~5/4 = 354.262
Optimal tunings:  
* WE: ~2 = 1202.979{{c}}, ~5/4 = 355.193{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.254{{c}}


Map: [{{val|1 1 2 4 2}}, {{val|0 2 1 -4 5}}]
{{Optimal ET sequence|legend=0| 3, 7, 10e }}


Vals: {{Vals| 7, 10, 17, 27ce, 44cce }}
Badness (Sintel): 0.940


Badness: 0.030680
=== Dichosis ===
Subgroup: 2.3.5.7.11


==Dichosis==
Comma list: 25/24, 35/33, 64/63
Comma list: 25/24, 35/33, 64/63


POTE generator: ~5/4 = 360.659
Mapping: {{mapping| 1 1 2 4 5 | 0 2 1 -4 -5 }}
 
Optimal tunings:
* WE: ~2 = 1197.526{{c}}, ~5/4 = 359.915{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.745{{c}}
 
{{Optimal ET sequence|legend=0| 3, 7e, 10 }}
 
Badness (Sintel): 1.37
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 25/24, 35/33, 40/39, 64/63
 
Mapping: {{mapping| 1 1 2 4 5 4 | 0 2 1 -4 -5 -1 }}


Map: [{{val|1 1 2 4 5}}, {{val|0 2 1 -4 -5}}]
Optimal tunings:  
* WE: ~2 = 1197.922{{c}}, ~5/4 = 360.021{{c}}
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.722{{c}}


Vals: {{Vals| 3, 7e, 10 }}
{{Optimal ET sequence|legend=0| 3, 7e, 10 }}


Badness: 0.041361
Badness (Sintel): 1.15


=Jamesbond=
== Decimal ==
[[Comma list]]: 25/24, 81/80
{{Main| Decimal }}
{{See also| Jubilismic clan }}


[[POTE tuning|POTE generator]]: ~8/7 = 258.139
Decimal tempers out 49/48 and [[50/49]], and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. [[10edo]] makes for a good tuning, from which it derives its name. [[14edo]] in the 14c val and [[24edo]] in the 24c val are also among the possibilities.


[[Map]]: [{{val|7 11 16 0}}, {{val|0 0 0 1}}]
[[Subgroup]]: 2.3.5.7


Wedgie: {{wedgie|0 0 7 0 11 16}}
[[Comma list]]: 25/24, 49/48


{{Vals|legend=1| 7, 14c }}
{{Mapping|legend=1| 2 0 3 4 | 0 2 1 1 }}


[[Badness]]: 0.041714
: mapping generators: ~7/5, ~7/4


==11-limit==
[[Optimal tuning]]s:
Comma list: 25/24, 33/32, 45/44
* [[WE]]: ~7/5 = 603.286{{c}}, ~7/4 = 953.637{{c}} (~7/6 = 252.935{{c}})
: [[error map]]: {{val| +6.571 +5.318 -22.821 -2.047 }}
* [[CWE]]: ~7/5 = 600.000{{c}}, ~7/4 = 950.957{{c}} (~7/6 = 249.043{{c}})
: error map: {{val| 0.000 -0.041 -35.357 -17.869 }}


POTE generator: ~8/7 = 258.910
{{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd }}


Map: [{{val|7 11 16 0 24}}, {{val|0 0 0 1 0}}]
[[Badness]] (Sintel): 0.717


Vals: {{Vals| 7, 14c }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.023524
Comma list: 25/24, 45/44, 49/48


==13-limit==
Mapping: {{mapping| 2 0 3 4 -1 | 0 2 1 1 5 }}
Comma list: 25/24, 27/26, 33/32, 40/39


POTE generator: ~8/7 = 250.764
Optimal tunings:
* WE: ~7/5 = 603.558{{c}}, ~7/4 = 952.121{{c}} (~7/6 = 254.996{{c}})
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 948.610{{c}} (~7/6 = 251.390{{c}})


Map: [{{val|7 11 16 0 24 26}}, {{val|0 0 0 1 0 0}}]
{{Optimal ET sequence|legend=0| 4e, 10, 14c, 24c }}


Vals: {{Vals| 7, 14c }}
Badness (Sintel): 0.883


Badness: 0.023003
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


==Septimal==
Comma list: 25/24, 45/44, 49/48, 91/90
Comma list: 25/24, 33/32, 45/44, 65/63


POTE generator: ~8/7 = 247.445
Mapping: {{mapping| 2 0 3 4 -1 1| 0 2 1 1 5 4}}


Map: [{{val|7 11 16 0 24 6}}, {{val|0 0 0 1 0 1}}]
Optimal tunings:  
* WE: ~7/5 = 603.612{{c}}, ~7/4 = 953.663{{c}} (~7/6 = 253.562{{c}})
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 950.116{{c}} (~7/6 = 249.884{{c}})


Vals: {{Vals| 7, 14cf }}
{{Optimal ET sequence|legend=0| 4ef, 10, 14cf, 24cf }}


Badness: 0.022569
Badness (Sintel): 0.881


=Sidi=
=== Decimated ===
[[Comma list]]: 25/24, 245/243
Subgroup: 2.3.5.7.11
 
Comma list: 25/24, 33/32, 49/48
 
Mapping: {{mapping| 2 0 3 4 10 | 0 2 1 1 -2 }}
 
Optimal tunings:
* WE: ~7/5 = 604.535{{c}}, ~7/4 = 952.076{{c}} (~7/6 = 256.994{{c}})
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 946.108{{c}} (~7/6 = 253.892{{c}})
 
{{Optimal ET sequence|legend=0| 4, 10e, 14c }}
 
Badness (Sintel): 1.04
 
=== Decibel ===
Subgroup: 2.3.5.7.11
 
Comma list: 25/24, 35/33, 49/48
 
Mapping: {{mapping| 2 0 3 4 7 | 0 2 1 1 0 }}


[[POTE tuning|POTE generator]]: ~9/7 = 427.208
Optimal tunings:  
* WE: ~7/5 = 599.404{{c}}, ~7/4 = 955.557{{c}} (~8/7 = 243.251{{c}})
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 956.169{{c}} (~8/7 = 243.831{{c}})


[[Map]]: [{{val|1 3 3 6}}, {{val|0 -4 -2 -9}}]
{{Optimal ET sequence|legend=0| 4, 6, 10 }}


Wedgie: {{wedgie|4 2 9 -12 3 15}}
Badness (Sintel): 1.07


{{Vals|legend=1| 3d, 14c, 45cc, 59bcccd }}
== Sidi ==
Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to [[squares]], to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however.


[[Badness]]: 0.056586
[[Subgroup]]: 2.3.5.7


==11-limit==
[[Comma list]]: 25/24, 245/243
Comma list: 25/24, 45/44, 99/98
 
{{Mapping|legend=1| 1 -1 1 -3 | 0 4 2 9 }}


POTE generator: ~9/7 = 427.273
: mapping generators: ~2, ~14/9


Map: [{{val|1 3 3 6 7}}, {{val|0 -4 -2 -9 -10}}]
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1207.178{{c}}, ~14/9 = 777.414{{c}}
: [[error map]]: {{val| +7.178 +0.523 -24.308 +6.367 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~14/9 = 773.872{{c}}
: error map: {{val| 0.000 -6.464 -38.569 -3.973 }}


Vals: {{Vals| 3de, 14c, 17, 45cce, 59bcccdee }}
{{Optimal ET sequence|legend=1| 3d, , 11cd, 14c }}


Badness: 0.032957
[[Badness]] (Sintel): 1.43


=Quad=
=== 11-limit ===
[[Comma list]]: 9/8, 25/24
Subgroup: 2.3.5.7.11


[[POTE tuning|POTE generator]]: ~8/7 = 324.482
Comma list: 25/24, 45/44, 99/98


[[Map]]: [{{val|4 6 9 0}}, {{val|0 0 0 1}}]
Mapping: {{mapping| 1 -1 1 -3 -3 | 0 4 2 9 10 }}


Wedgie: {{wedgie|0 0 4 0 6 9}}
Optimal tunings:  
* WE: ~2 = 1207.200{{c}}, ~11/7 = 777.363{{c}}
* CWE: ~2 = 1200.000{{c}}, ~11/7 = 773.777{{c}}


{{Vals|legend=1| 4 }}
{{Optimal ET sequence|legend=0| 3de, …, 11cdee, 14c }}


[[Badness]]: 0.045911
Badness (Sintel): 1.09


[[Category:Theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Dicot]]
[[Category:Dicot family| ]] <!-- main article -->
[[Category:Dicot| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 14:10, 17 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The dicot family of temperaments tempers out 25/24, the classical chromatic semitone.

Dicot

The head of this family, dicot, is generated by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, (5/4)2 = (3/2)(25/24). Its ploidacot is the same as its name, dicot.

Possible tunings for dicot are 7edo, 10edo, 17edo, 24edo using the val 24 38 55] (24c), and 31edo using the val 31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an exotemperament.

Subgroup: 2.3.5

Comma list: 25/24

Mapping[1 1 2], 0 2 1]]

mapping generators: ~2, ~5/4

Optimal tunings:

  • WE: ~2 = 1206.283 ¢, ~6/5 = 350.420 ¢
error map: +6.283 +5.167 -23.328]
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 351.086 ¢
error map: 0.000 +0.216 -35.228]

Tuning ranges:

Optimal ET sequence3, 4, 7, 17, 24c, 31c

Badness (Sintel): 0.306

Overview to extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot adds 36/35, flattie adds 21/20, sharpie adds 28/27, and dichotic adds 64/63, all retaining the same period and generator.

Decimal adds 49/48, sidi adds 245/243, and jamesbond adds 16/15. Here decimal divides the period to a semi-octave, and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.

Temperaments discussed elsewhere are:

The rest are considered below.

2.3.5.11 subgroup

The 2.3.5.11-subgroup extension maps 11/9~27/22 to the neutral third. As such, it is related to most of the septimal extensions.

Subgroup: 2.3.5.11

Comma list: 25/24, 45/44

Subgroup val mapping: [1 1 2 2], 0 2 1 5]]

Gencom mapping: [1 1 2 0 2], 0 2 1 0 5]]

Optimal tunings:

  • WE: ~2 = 1206.750 ¢, ~6/5 = 348.684 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 348.954 ¢

Optimal ET sequence: 3e, 4e, 7, 24c, 31c

Badness (Sintel): 0.370

2.3.5.11.13 subgroup

Subgroup: 2.3.5.11.13

Comma list: 25/24, 40/39, 45/44

Subgroup val mapping: [1 1 2 2 4], 0 2 1 5 -1]]

Gencom mapping: [1 1 2 0 2 4], 0 2 1 0 5 -1]]

Optimal tunings:

  • WE: ~2 = 1202.433 ¢, ~5/4 = 351.237 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 350.978 ¢

Optimal ET sequence: 3e, 7, 17

Badness (Sintel): 0.536

Septimal dicot

Septimal dicot is the extension where 7/6 and 9/7 are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy.

Subgroup: 2.3.5.7

Comma list: 15/14, 25/24

Mapping[1 1 2 2], 0 2 1 3]]

Optimal tunings:

  • WE: ~2 = 1205.532 ¢, ~6/5 = 337.931 ¢
error map: +5.532 -20.561 -37.319 +56.032]
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 338.561 ¢
error map: 0.000 -24.834 -47.753 +46.856]

Optimal ET sequence3d, 4, 7

Badness (Sintel): 0.504

11-limit

Subgroup: 2.3.5.7.11

Comma list: 15/14, 22/21, 25/24

Mapping: [1 1 2 2 2], 0 2 1 3 5]]

Optimal tunings:

  • WE: ~2 = 1203.346 ¢, ~6/5 = 343.078 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 343.260 ¢

Optimal ET sequence: 3de, 4e, 7

Badness (Sintel): 0.656

Eudicot

Subgroup: 2.3.5.7.11

Comma list: 15/14, 25/24, 33/32

Mapping: [1 1 2 2 4], 0 2 1 3 -2]]

Optimal tunings:

  • WE: ~2 = 1205.828 ¢, ~6/5 = 337.683 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 336.909 ¢

Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd

Badness (Sintel): 0.896

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 15/14, 25/24, 33/32, 40/39

Mapping: [1 1 2 2 4 4], 0 2 1 3 -2 -1]]

Optimal tunings:

  • WE: ~2 = 1202.660 ¢, ~6/5 = 339.597 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 339.104 ¢

Optimal ET sequence: 3d, 4, 7

Badness (Sintel): 0.985

Flattie

This temperament used to be known as flat. Unlike septimal dicot where 7/6 is added to the neutral third, here 8/7 is added instead.

Subgroup: 2.3.5.7

Comma list: 21/20, 25/24

Mapping[1 1 2 3], 0 2 1 -1]]

Optimal tunings:

  • WE: ~2 = 1220.466 ¢, ~6/5 = 337.577 ¢
error map: +20.466 -6.335 -7.804 -45.004]
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 335.391 ¢
error map: 0.000 -31.173 -50.922 -104.217]

Optimal ET sequence3, 4, 7d, 11cd, 18bcddd

Badness (Sintel): 0.642

11-limit

Subgroup: 2.3.5.7.11

Comma list: 21/20, 25/24, 33/32

Mapping: [1 1 2 3 4], 0 2 1 -1 -2]]

Optimal tunings:

  • WE: ~2 = 1216.069 ¢, ~6/5 = 342.052 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 338.467 ¢

Optimal ET sequence: 3, 4, 7d

Badness (Sintel): 0.826

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 14/13, 21/20, 25/24, 33/32

Mapping: [1 1 2 3 4 4], 0 2 1 -1 -2 -1]]

Optimal tunings:

  • WE: ~2 = 1211.546 ¢, ~6/5 = 344.304 ¢
  • CWE: ~2 = 1200.000 ¢, ~6/5 = 341.373 ¢

Optimal ET sequence: 3, 4, 7d

Badness (Sintel): 0.968

Sharpie

This temperament used to be known as sharp. This is where you find 7/6 at the major second and 7/4 at the major sixth.

Subgroup: 2.3.5.7

Comma list: 25/24, 28/27

Mapping[1 1 2 1], 0 2 1 6]]

Optimal tunings:

  • WE: ~2 = 1202.488 ¢, ~5/4 = 358.680 ¢
error map: +2.488 +17.893 -22.658 -14.258]
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 358.495 ¢
error map: 0.000 +15.035 -27.818 -17.854]

Optimal ET sequence3d, 7d, 10

Badness (Sintel): 0.732

11-limit

Subgroup: 2.3.5.7.11

Comma list: 25/24, 28/27, 35/33

Mapping: [1 1 2 1 2], 0 2 1 6 5]]

Optimal tunings:

  • WE: ~2 = 1201.518 ¢, ~5/4 = 356.557 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 356.457 ¢

Optimal ET sequence: 3de, 7d, 10, 17d

Badness (Sintel): 0.739

Dichotic

In dichotic, 7/4 is found at a stack of two perfect fourths.

Subgroup: 2.3.5.7

Comma list: 25/24, 64/63

Mapping[1 1 2 4], 0 2 1 -4]]

Optimal tunings:

  • WE: ~2 = 1200.802 ¢, ~5/4 = 356.502 ¢
error map: +0.802 +11.851 -28.208 +8.374]
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 356.275 ¢
error map: 0.000 +10.595 -30.039 +6.074]

Optimal ET sequence3, 7, 10, 17, 27c

Badness (Sintel): 0.951

11-limit

Subgroup: 2.3.5.7.11

Comma list: 25/24, 45/44, 64/63

Mapping: [1 1 2 4 2], 0 2 1 -4 5]]

Optimal tunings:

  • WE: ~2 = 1199.504 ¢, ~5/4 = 354.115 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 354.236 ¢

Optimal ET sequence: 7, 10, 17

Badness (Sintel): 1.01

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 25/24, 40/39, 45/44, 64/63

Mapping: [1 1 2 4 2 4], 0 2 1 -4 5 -1]]

Optimal tunings:

  • WE: ~2 = 1199.289 ¢, ~5/4 = 354.156 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 354.340 ¢

Optimal ET sequence: 7, 10, 17, 27ce, 44cce

Badness (Sintel): 0.896

Dichotomic

Subgroup: 2.3.5.7.11

Comma list: 22/21, 25/24, 33/32

Mapping: [1 1 2 4 4], 0 2 1 -4 -2]]

Optimal tunings:

  • WE: ~2 = 1203.949 ¢, ~5/4 = 355.239 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 354.024 ¢

Optimal ET sequence: 3, 7, 10e

Badness (Sintel): 1.05

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 22/21, 25/24, 33/32, 40/39

Mapping: [1 1 2 4 4 4], 0 2 1 -4 -2 -1]]

Optimal tunings:

  • WE: ~2 = 1202.979 ¢, ~5/4 = 355.193 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 354.254 ¢

Optimal ET sequence: 3, 7, 10e

Badness (Sintel): 0.940

Dichosis

Subgroup: 2.3.5.7.11

Comma list: 25/24, 35/33, 64/63

Mapping: [1 1 2 4 5], 0 2 1 -4 -5]]

Optimal tunings:

  • WE: ~2 = 1197.526 ¢, ~5/4 = 359.915 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 360.745 ¢

Optimal ET sequence: 3, 7e, 10

Badness (Sintel): 1.37

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 25/24, 35/33, 40/39, 64/63

Mapping: [1 1 2 4 5 4], 0 2 1 -4 -5 -1]]

Optimal tunings:

  • WE: ~2 = 1197.922 ¢, ~5/4 = 360.021 ¢
  • CWE: ~2 = 1200.000 ¢, ~5/4 = 360.722 ¢

Optimal ET sequence: 3, 7e, 10

Badness (Sintel): 1.15

Decimal

Decimal tempers out 49/48 and 50/49, and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. 10edo makes for a good tuning, from which it derives its name. 14edo in the 14c val and 24edo in the 24c val are also among the possibilities.

Subgroup: 2.3.5.7

Comma list: 25/24, 49/48

Mapping[2 0 3 4], 0 2 1 1]]

mapping generators: ~7/5, ~7/4

Optimal tunings:

  • WE: ~7/5 = 603.286 ¢, ~7/4 = 953.637 ¢ (~7/6 = 252.935 ¢)
error map: +6.571 +5.318 -22.821 -2.047]
  • CWE: ~7/5 = 600.000 ¢, ~7/4 = 950.957 ¢ (~7/6 = 249.043 ¢)
error map: 0.000 -0.041 -35.357 -17.869]

Optimal ET sequence4, 10, 14c, 24c, 38ccd

Badness (Sintel): 0.717

11-limit

Subgroup: 2.3.5.7.11

Comma list: 25/24, 45/44, 49/48

Mapping: [2 0 3 4 -1], 0 2 1 1 5]]

Optimal tunings:

  • WE: ~7/5 = 603.558 ¢, ~7/4 = 952.121 ¢ (~7/6 = 254.996 ¢)
  • CWE: ~7/5 = 600.000 ¢, ~7/4 = 948.610 ¢ (~7/6 = 251.390 ¢)

Optimal ET sequence: 4e, 10, 14c, 24c

Badness (Sintel): 0.883

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 25/24, 45/44, 49/48, 91/90

Mapping: [2 0 3 4 -1 1], 0 2 1 1 5 4]]

Optimal tunings:

  • WE: ~7/5 = 603.612 ¢, ~7/4 = 953.663 ¢ (~7/6 = 253.562 ¢)
  • CWE: ~7/5 = 600.000 ¢, ~7/4 = 950.116 ¢ (~7/6 = 249.884 ¢)

Optimal ET sequence: 4ef, 10, 14cf, 24cf

Badness (Sintel): 0.881

Decimated

Subgroup: 2.3.5.7.11

Comma list: 25/24, 33/32, 49/48

Mapping: [2 0 3 4 10], 0 2 1 1 -2]]

Optimal tunings:

  • WE: ~7/5 = 604.535 ¢, ~7/4 = 952.076 ¢ (~7/6 = 256.994 ¢)
  • CWE: ~7/5 = 600.000 ¢, ~7/4 = 946.108 ¢ (~7/6 = 253.892 ¢)

Optimal ET sequence: 4, 10e, 14c

Badness (Sintel): 1.04

Decibel

Subgroup: 2.3.5.7.11

Comma list: 25/24, 35/33, 49/48

Mapping: [2 0 3 4 7], 0 2 1 1 0]]

Optimal tunings:

  • WE: ~7/5 = 599.404 ¢, ~7/4 = 955.557 ¢ (~8/7 = 243.251 ¢)
  • CWE: ~7/5 = 600.000 ¢, ~7/4 = 956.169 ¢ (~8/7 = 243.831 ¢)

Optimal ET sequence: 4, 6, 10

Badness (Sintel): 1.07

Sidi

Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to squares, to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however.

Subgroup: 2.3.5.7

Comma list: 25/24, 245/243

Mapping[1 -1 1 -3], 0 4 2 9]]

mapping generators: ~2, ~14/9

Optimal tunings:

  • WE: ~2 = 1207.178 ¢, ~14/9 = 777.414 ¢
error map: +7.178 +0.523 -24.308 +6.367]
  • CWE: ~2 = 1200.000 ¢, ~14/9 = 773.872 ¢
error map: 0.000 -6.464 -38.569 -3.973]

Optimal ET sequence3d, …, 11cd, 14c

Badness (Sintel): 1.43

11-limit

Subgroup: 2.3.5.7.11

Comma list: 25/24, 45/44, 99/98

Mapping: [1 -1 1 -3 -3], 0 4 2 9 10]]

Optimal tunings:

  • WE: ~2 = 1207.200 ¢, ~11/7 = 777.363 ¢
  • CWE: ~2 = 1200.000 ¢, ~11/7 = 773.777 ¢

Optimal ET sequence: 3de, …, 11cdee, 14c

Badness (Sintel): 1.09