Dicot family: Difference between revisions
Cmloegcmluin (talk | contribs) use wedgie monzo and val templates |
+ short intro to each temp |
||
(48 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
The | {{Technical data page}} | ||
The '''dicot family''' of [[regular temperament|temperaments]] [[tempering out|tempers out]] [[25/24]], the classical chromatic semitone. | |||
== | == Dicot == | ||
The | The head of this family, dicot, is [[generator|generated]] by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, {{nowrap|(5/4)<sup>2</sup> {{=}} (3/2)(25/24)}}. Its [[ploidacot]] is the same as its name, dicot. | ||
Possible tunings for dicot are [[7edo]], [[10edo]], [[17edo]], [[24edo]] using the val {{val| 24 38 55 }} (24c), and [[31edo]] using the val {{val| 31 49 71 }} (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an [[exotemperament]]. | |||
[[ | |||
[[ | [[Subgroup]]: 2.3.5 | ||
[[ | [[Comma list]]: 25/24 | ||
{{ | {{Mapping|legend=1| 1 1 2 | 0 2 1 }} | ||
[[Badness]]: 0. | : mapping generators: ~2, ~5/4 | ||
[[Optimal tuning]]s: | |||
* [[WE]]: ~2 = 1206.283{{c}}, ~6/5 = 350.420{{c}} | |||
: [[error map]]: {{val| +6.283 +5.167 -23.328 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 351.086{{c}} | |||
: error map: {{val| 0.000 +0.216 -35.228 }} | |||
[[Tuning ranges]]: | |||
* [[5-odd-limit]] [[diamond monotone]]: ~5/4 = [300.000, 400.000] (1\4 to 1\3) | |||
* 5-odd-limit [[diamond tradeoff]]: ~5/4 = [315.641, 386.314] (full comma to untempered) | |||
{{Optimal ET sequence|legend=1| 3, 4, 7, 17, 24c, 31c }} | |||
[[Badness]] (Sintel): 0.306 | |||
=== Overview to extensions === | |||
The second comma of the [[normal lists|normal comma list]] defines which [[7-limit]] family member we are looking at. Septimal dicot adds [[36/35]], flattie adds [[21/20]], sharpie adds [[28/27]], and dichotic adds [[64/63]], all retaining the same period and generator. | |||
Decimal adds [[49/48]], sidi adds [[245/243]], and jamesbond adds [[16/15]]. Here decimal divides the [[period]] to a [[sqrt(2)|semi-octave]], and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator. | |||
Temperaments discussed elsewhere are: | |||
* ''[[Geryon]]'' → [[Very low accuracy temperaments #Geryon|Very low accuracy temperaments]] | |||
* ''[[Jamesbond]]'' → [[7th-octave temperaments #Jamesbond|7th-octave temperaments]] | |||
The rest are considered below. | |||
=== 2.3.5.11 subgroup === | |||
The 2.3.5.11-subgroup extension maps [[11/9]]~[[27/22]] to the neutral third. As such, it is related to most of the septimal extensions. | |||
Subgroup: 2.3.5.11 | |||
Comma list: 25/24, 45/44 | |||
Subgroup val mapping: {{mapping| 1 1 2 2 | 0 2 1 5 }} | |||
Gencom mapping: {{mapping| 1 1 2 0 2 | 0 2 1 0 5 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1206.750{{c}}, ~6/5 = 348.684{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 348.954{{c}} | |||
{{Optimal ET sequence|legend=0| 3e, 4e, 7, 24c, 31c }} | |||
Badness (Sintel): 0.370 | |||
==== 2.3.5.11.13 subgroup ==== | |||
Subgroup: 2.3.5.11.13 | |||
Comma list: 25/24, 40/39, 45/44 | |||
Subgroup val mapping: {{mapping| 1 1 2 2 4 | 0 2 1 5 -1 }} | |||
Gencom mapping: {{mapping| 1 1 2 0 2 4 | 0 2 1 0 5 -1 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1202.433{{c}}, ~5/4 = 351.237{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 350.978{{c}} | |||
{{Optimal ET sequence|legend=0| 3e, 7, 17 }} | |||
Badness (Sintel): 0.536 | |||
== Septimal dicot == | |||
Septimal dicot is the extension where [[7/6]] and [[9/7]] are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 15/14, 25/24 | [[Comma list]]: 15/14, 25/24 | ||
{{Mapping|legend=1| 1 1 2 2 | 0 2 1 3 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~2 = 1205.532{{c}}, ~6/5 = 337.931{{c}} | |||
: [[error map]]: {{val| +5.532 -20.561 -37.319 +56.032 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 338.561{{c}} | |||
: error map: {{val| 0.000 -24.834 -47.753 +46.856 }} | |||
{{Optimal ET sequence|legend=1| 3d, 4, 7 }} | |||
[[Badness]] (Sintel): 0.504 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 15/14, 22/21, 25/24 | Comma list: 15/14, 22/21, 25/24 | ||
Mapping: {{mapping| 1 1 2 2 2 | 0 2 1 3 5 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1203.346{{c}}, ~6/5 = 343.078{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 343.260{{c}} | |||
{{Optimal ET sequence|legend=0| 3de, 4e, 7 }} | |||
Badness (Sintel): 0.656 | |||
=== Eudicot === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 15/14, 25/24, 33/32 | Comma list: 15/14, 25/24, 33/32 | ||
Mapping: {{mapping| 1 1 2 2 4 | 0 2 1 3 -2 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1205.828{{c}}, ~6/5 = 337.683{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 336.909{{c}} | |||
{{Optimal ET sequence|legend=0| 3d, 4, 7, 18bc, 25bccd }} | |||
Badness (Sintel): 0.896 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 15/14, 25/24, 33/32, 40/39 | Comma list: 15/14, 25/24, 33/32, 40/39 | ||
Mapping: {{mapping| 1 1 2 2 4 4 | 0 2 1 3 -2 -1 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1202.660{{c}}, ~6/5 = 339.597{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 339.104{{c}} | |||
{{Optimal ET sequence|legend=0| 3d, 4, 7 }} | |||
Badness (Sintel): 0.985 | |||
== Flattie == | |||
This temperament used to be known as ''flat''. Unlike septimal dicot where 7/6 is added to the neutral third, here [[8/7]] is added instead. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 21/20, 25/24 | [[Comma list]]: 21/20, 25/24 | ||
{{Mapping|legend=1| 1 1 2 3 | 0 2 1 -1 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~2 = 1220.466{{c}}, ~6/5 = 337.577{{c}} | |||
: [[error map]]: {{val| +20.466 -6.335 -7.804 -45.004 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 335.391{{c}} | |||
: error map: {{val| 0.000 -31.173 -50.922 -104.217 }} | |||
{{Optimal ET sequence|legend=1| 3, 4, 7d, 11cd, 18bcddd }} | |||
[[Badness]] (Sintel): 0.642 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 21/20, 25/24, 33/32 | Comma list: 21/20, 25/24, 33/32 | ||
Mapping: {{mapping| 1 1 2 3 4 | 0 2 1 -1 -2 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1216.069{{c}}, ~6/5 = 342.052{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 338.467{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 4, 7d }} | |||
Badness (Sintel): 0.826 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 14/13, 21/20, 25/24, 33/32 | Comma list: 14/13, 21/20, 25/24, 33/32 | ||
Mapping: {{mapping| 1 1 2 3 4 4 | 0 2 1 -1 -2 -1 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1211.546{{c}}, ~6/5 = 344.304{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~6/5 = 341.373{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 4, 7d }} | |||
Badness (Sintel): 0.968 | |||
== Sharpie == | |||
This temperament used to be known as ''sharp''. This is where you find 7/6 at the major second and [[7/4]] at the major sixth. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 25/24, 28/27 | [[Comma list]]: 25/24, 28/27 | ||
{{Mapping|legend=1| 1 1 2 1 | 0 2 1 6 }} | |||
[[ | [[Optimal tuning]]s: | ||
* [[WE]]: ~2 = 1202.488{{c}}, ~5/4 = 358.680{{c}} | |||
: [[error map]]: {{val| +2.488 +17.893 -22.658 -14.258 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 358.495{{c}} | |||
: error map: {{val| 0.000 +15.035 -27.818 -17.854 }} | |||
{{Optimal ET sequence|legend=1| 3d, 7d, 10 }} | |||
[[Badness]] (Sintel): 0.732 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 28/27, 35/33 | Comma list: 25/24, 28/27, 35/33 | ||
Mapping: {{mapping| 1 1 2 1 2 | 0 2 1 6 5 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1201.518{{c}}, ~5/4 = 356.557{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 356.457{{c}} | |||
{{Optimal ET sequence|legend=0| 3de, 7d, 10, 17d }} | |||
Badness: 0. | Badness (Sintel): 0.739 | ||
= | == Dichotic == | ||
In dichotic, 7/4 is found at a stack of two perfect fourths. | |||
[[ | [[Subgroup]]: 2.3.5.7 | ||
[[ | [[Comma list]]: 25/24, 64/63 | ||
{{Mapping|legend=1| 1 1 2 4 | 0 2 1 -4 }} | |||
{{ | [[Optimal tuning]]s: | ||
* [[WE]]: ~2 = 1200.802{{c}}, ~5/4 = 356.502{{c}} | |||
: [[error map]]: {{val| +0.802 +11.851 -28.208 +8.374 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~5/4 = 356.275{{c}} | |||
: error map: {{val| 0.000 +10.595 -30.039 +6.074 }} | |||
{{Optimal ET sequence|legend=1| 3, 7, 10, 17, 27c }} | |||
[[Badness]] (Sintel): 0.951 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 64/63 | |||
Mapping: {{mapping| 1 1 2 4 2 | 0 2 1 -4 5 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1199.504{{c}}, ~5/4 = 354.115{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.236{{c}} | |||
= | {{Optimal ET sequence|legend=0| 7, 10, 17 }} | ||
Badness (Sintel): 1.01 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 25/24, 40/39, 45/44, 64/63 | |||
Mapping: {{mapping| 1 1 2 4 2 4 | 0 2 1 -4 5 -1 }} | |||
== | Optimal tunings: | ||
* WE: ~2 = 1199.289{{c}}, ~5/4 = 354.156{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.340{{c}} | |||
{{Optimal ET sequence|legend=0| 7, 10, 17, 27ce, 44cce }} | |||
Badness (Sintel): 0.896 | |||
=== Dichotomic === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 22/21, 25/24, 33/32 | |||
Mapping: {{mapping| 1 1 2 4 4 | 0 2 1 -4 -2 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1203.949{{c}}, ~5/4 = 355.239{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.024{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 7, 10e }} | |||
Badness (Sintel): 1.05 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 22/21, 25/24, 33/32, 40/39 | |||
Mapping: {{mapping| 1 1 2 4 4 4 | 0 2 1 -4 -2 -1 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1202.979{{c}}, ~5/4 = 355.193{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 354.254{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 7, 10e }} | |||
Badness (Sintel): 0.940 | |||
=== Dichosis === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 35/33, 64/63 | Comma list: 25/24, 35/33, 64/63 | ||
Mapping: {{mapping| 1 1 2 4 5 | 0 2 1 -4 -5 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1197.526{{c}}, ~5/4 = 359.915{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.745{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 7e, 10 }} | |||
Badness (Sintel): 1.37 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 25/24, 35/33, 40/39, 64/63 | |||
Mapping: {{mapping| 1 1 2 4 5 4 | 0 2 1 -4 -5 -1 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1197.922{{c}}, ~5/4 = 360.021{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~5/4 = 360.722{{c}} | |||
{{Optimal ET sequence|legend=0| 3, 7e, 10 }} | |||
Badness: | Badness (Sintel): 1.15 | ||
= | == Decimal == | ||
{{Main| Decimal }} | |||
{{See also| Jubilismic clan }} | |||
[[ | Decimal tempers out 49/48 and [[50/49]], and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. [[10edo]] makes for a good tuning, from which it derives its name. [[14edo]] in the 14c val and [[24edo]] in the 24c val are also among the possibilities. | ||
[[ | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 49/48 | |||
{{ | {{Mapping|legend=1| 2 0 3 4 | 0 2 1 1 }} | ||
: mapping generators: ~7/5, ~7/4 | |||
== | [[Optimal tuning]]s: | ||
* [[WE]]: ~7/5 = 603.286{{c}}, ~7/4 = 953.637{{c}} (~7/6 = 252.935{{c}}) | |||
: [[error map]]: {{val| +6.571 +5.318 -22.821 -2.047 }} | |||
* [[CWE]]: ~7/5 = 600.000{{c}}, ~7/4 = 950.957{{c}} (~7/6 = 249.043{{c}}) | |||
: error map: {{val| 0.000 -0.041 -35.357 -17.869 }} | |||
{{Optimal ET sequence|legend=1| 4, 10, 14c, 24c, 38ccd }} | |||
[[Badness]] (Sintel): 0.717 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 49/48 | |||
Mapping: {{mapping| 2 0 3 4 -1 | 0 2 1 1 5 }} | |||
Optimal tunings: | |||
* WE: ~7/5 = 603.558{{c}}, ~7/4 = 952.121{{c}} (~7/6 = 254.996{{c}}) | |||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 948.610{{c}} (~7/6 = 251.390{{c}}) | |||
{{Optimal ET sequence|legend=0| 4e, 10, 14c, 24c }} | |||
Badness (Sintel): 0.883 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 25/24, 45/44, 49/48, 91/90 | |||
Comma list: 25/24, | |||
Mapping: {{mapping| 2 0 3 4 -1 1| 0 2 1 1 5 4}} | |||
Optimal tunings: | |||
* WE: ~7/5 = 603.612{{c}}, ~7/4 = 953.663{{c}} (~7/6 = 253.562{{c}}) | |||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 950.116{{c}} (~7/6 = 249.884{{c}}) | |||
{{Optimal ET sequence|legend=0| 4ef, 10, 14cf, 24cf }} | |||
Badness: 0. | Badness (Sintel): 0.881 | ||
= | === Decimated === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 33/32, 49/48 | |||
Mapping: {{mapping| 2 0 3 4 10 | 0 2 1 1 -2 }} | |||
Optimal tunings: | |||
* WE: ~7/5 = 604.535{{c}}, ~7/4 = 952.076{{c}} (~7/6 = 256.994{{c}}) | |||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 946.108{{c}} (~7/6 = 253.892{{c}}) | |||
{{Optimal ET sequence|legend=0| 4, 10e, 14c }} | |||
Badness (Sintel): 1.04 | |||
=== Decibel === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 35/33, 49/48 | |||
Mapping: {{mapping| 2 0 3 4 7 | 0 2 1 1 0 }} | |||
Optimal tunings: | |||
* WE: ~7/5 = 599.404{{c}}, ~7/4 = 955.557{{c}} (~8/7 = 243.251{{c}}) | |||
* CWE: ~7/5 = 600.000{{c}}, ~7/4 = 956.169{{c}} (~8/7 = 243.831{{c}}) | |||
{{Optimal ET sequence|legend=0| 4, 6, 10 }} | |||
Badness (Sintel): 1.07 | |||
== Sidi == | |||
Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to [[squares]], to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however. | |||
[[ | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 25/24, 245/243 | |||
Comma list: 25/24, | |||
{{Mapping|legend=1| 1 -1 1 -3 | 0 4 2 9 }} | |||
: mapping generators: ~2, ~14/9 | |||
[[Optimal tuning]]s: | |||
* [[WE]]: ~2 = 1207.178{{c}}, ~14/9 = 777.414{{c}} | |||
: [[error map]]: {{val| +7.178 +0.523 -24.308 +6.367 }} | |||
* [[CWE]]: ~2 = 1200.000{{c}}, ~14/9 = 773.872{{c}} | |||
: error map: {{val| 0.000 -6.464 -38.569 -3.973 }} | |||
{{Optimal ET sequence|legend=1| 3d, …, 11cd, 14c }} | |||
Badness: | [[Badness]] (Sintel): 1.43 | ||
= | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | |||
Comma list: 25/24, 45/44, 99/98 | |||
Mapping: {{mapping| 1 -1 1 -3 -3 | 0 4 2 9 10 }} | |||
Optimal tunings: | |||
* WE: ~2 = 1207.200{{c}}, ~11/7 = 777.363{{c}} | |||
* CWE: ~2 = 1200.000{{c}}, ~11/7 = 773.777{{c}} | |||
{{ | {{Optimal ET sequence|legend=0| 3de, …, 11cdee, 14c }} | ||
Badness (Sintel): 1.09 | |||
[[Category: | [[Category:Temperament families]] | ||
[[Category: | [[Category:Pages with mostly numerical content]] | ||
[[Category:Dicot]] | [[Category:Dicot family| ]] <!-- main article --> | ||
[[Category:Dicot| ]] <!-- key article --> | |||
[[Category:Rank 2]] |
Latest revision as of 14:10, 17 August 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The dicot family of temperaments tempers out 25/24, the classical chromatic semitone.
Dicot
The head of this family, dicot, is generated by a classical third (major and minor mean the same thing), and two such thirds give a fifth. In fact, (5/4)2 = (3/2)(25/24). Its ploidacot is the same as its name, dicot.
Possible tunings for dicot are 7edo, 10edo, 17edo, 24edo using the val ⟨24 38 55] (24c), and 31edo using the val ⟨31 49 71] (31c). In a sense, what dicot is all about is using neutral thirds and sixths and pretending that these are 5-limit, and like any temperament which seems to involve a lot of "pretending", dicot is close to the edge of what can be sensibly called a temperament at all. In other words, it is an exotemperament.
Subgroup: 2.3.5
Comma list: 25/24
Mapping: [⟨1 1 2], ⟨0 2 1]]
- mapping generators: ~2, ~5/4
- WE: ~2 = 1206.283 ¢, ~6/5 = 350.420 ¢
- error map: ⟨+6.283 +5.167 -23.328]
- CWE: ~2 = 1200.000 ¢, ~5/4 = 351.086 ¢
- error map: ⟨0.000 +0.216 -35.228]
- 5-odd-limit diamond monotone: ~5/4 = [300.000, 400.000] (1\4 to 1\3)
- 5-odd-limit diamond tradeoff: ~5/4 = [315.641, 386.314] (full comma to untempered)
Optimal ET sequence: 3, 4, 7, 17, 24c, 31c
Badness (Sintel): 0.306
Overview to extensions
The second comma of the normal comma list defines which 7-limit family member we are looking at. Septimal dicot adds 36/35, flattie adds 21/20, sharpie adds 28/27, and dichotic adds 64/63, all retaining the same period and generator.
Decimal adds 49/48, sidi adds 245/243, and jamesbond adds 16/15. Here decimal divides the period to a semi-octave, and sidi uses 14/9 as a generator, with two of them making up the combined 5/2~12/5 neutral tenth. Jamesbond has a period of 1/7 octave, and uses an approximate 15/14 as generator.
Temperaments discussed elsewhere are:
The rest are considered below.
2.3.5.11 subgroup
The 2.3.5.11-subgroup extension maps 11/9~27/22 to the neutral third. As such, it is related to most of the septimal extensions.
Subgroup: 2.3.5.11
Comma list: 25/24, 45/44
Subgroup val mapping: [⟨1 1 2 2], ⟨0 2 1 5]]
Gencom mapping: [⟨1 1 2 0 2], ⟨0 2 1 0 5]]
Optimal tunings:
- WE: ~2 = 1206.750 ¢, ~6/5 = 348.684 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 348.954 ¢
Optimal ET sequence: 3e, 4e, 7, 24c, 31c
Badness (Sintel): 0.370
2.3.5.11.13 subgroup
Subgroup: 2.3.5.11.13
Comma list: 25/24, 40/39, 45/44
Subgroup val mapping: [⟨1 1 2 2 4], ⟨0 2 1 5 -1]]
Gencom mapping: [⟨1 1 2 0 2 4], ⟨0 2 1 0 5 -1]]
Optimal tunings:
- WE: ~2 = 1202.433 ¢, ~5/4 = 351.237 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 350.978 ¢
Optimal ET sequence: 3e, 7, 17
Badness (Sintel): 0.536
Septimal dicot
Septimal dicot is the extension where 7/6 and 9/7 are also conflated into 5/4~6/5. Although 5/4~6/5 covers a giant block of pitches already, 7/6 and 9/7 are often considered as thirds too. On that account one could argue for the canonicity of this extension, despite the relatively poor accuracy.
Subgroup: 2.3.5.7
Comma list: 15/14, 25/24
Mapping: [⟨1 1 2 2], ⟨0 2 1 3]]
- WE: ~2 = 1205.532 ¢, ~6/5 = 337.931 ¢
- error map: ⟨+5.532 -20.561 -37.319 +56.032]
- CWE: ~2 = 1200.000 ¢, ~6/5 = 338.561 ¢
- error map: ⟨0.000 -24.834 -47.753 +46.856]
Optimal ET sequence: 3d, 4, 7
Badness (Sintel): 0.504
11-limit
Subgroup: 2.3.5.7.11
Comma list: 15/14, 22/21, 25/24
Mapping: [⟨1 1 2 2 2], ⟨0 2 1 3 5]]
Optimal tunings:
- WE: ~2 = 1203.346 ¢, ~6/5 = 343.078 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 343.260 ¢
Optimal ET sequence: 3de, 4e, 7
Badness (Sintel): 0.656
Eudicot
Subgroup: 2.3.5.7.11
Comma list: 15/14, 25/24, 33/32
Mapping: [⟨1 1 2 2 4], ⟨0 2 1 3 -2]]
Optimal tunings:
- WE: ~2 = 1205.828 ¢, ~6/5 = 337.683 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 336.909 ¢
Optimal ET sequence: 3d, 4, 7, 18bc, 25bccd
Badness (Sintel): 0.896
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 15/14, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 2 4 4], ⟨0 2 1 3 -2 -1]]
Optimal tunings:
- WE: ~2 = 1202.660 ¢, ~6/5 = 339.597 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 339.104 ¢
Badness (Sintel): 0.985
Flattie
This temperament used to be known as flat. Unlike septimal dicot where 7/6 is added to the neutral third, here 8/7 is added instead.
Subgroup: 2.3.5.7
Comma list: 21/20, 25/24
Mapping: [⟨1 1 2 3], ⟨0 2 1 -1]]
- WE: ~2 = 1220.466 ¢, ~6/5 = 337.577 ¢
- error map: ⟨+20.466 -6.335 -7.804 -45.004]
- CWE: ~2 = 1200.000 ¢, ~6/5 = 335.391 ¢
- error map: ⟨0.000 -31.173 -50.922 -104.217]
Optimal ET sequence: 3, 4, 7d, 11cd, 18bcddd
Badness (Sintel): 0.642
11-limit
Subgroup: 2.3.5.7.11
Comma list: 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4], ⟨0 2 1 -1 -2]]
Optimal tunings:
- WE: ~2 = 1216.069 ¢, ~6/5 = 342.052 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 338.467 ¢
Badness (Sintel): 0.826
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 14/13, 21/20, 25/24, 33/32
Mapping: [⟨1 1 2 3 4 4], ⟨0 2 1 -1 -2 -1]]
Optimal tunings:
- WE: ~2 = 1211.546 ¢, ~6/5 = 344.304 ¢
- CWE: ~2 = 1200.000 ¢, ~6/5 = 341.373 ¢
Badness (Sintel): 0.968
Sharpie
This temperament used to be known as sharp. This is where you find 7/6 at the major second and 7/4 at the major sixth.
Subgroup: 2.3.5.7
Comma list: 25/24, 28/27
Mapping: [⟨1 1 2 1], ⟨0 2 1 6]]
- WE: ~2 = 1202.488 ¢, ~5/4 = 358.680 ¢
- error map: ⟨+2.488 +17.893 -22.658 -14.258]
- CWE: ~2 = 1200.000 ¢, ~5/4 = 358.495 ¢
- error map: ⟨0.000 +15.035 -27.818 -17.854]
Optimal ET sequence: 3d, 7d, 10
Badness (Sintel): 0.732
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 28/27, 35/33
Mapping: [⟨1 1 2 1 2], ⟨0 2 1 6 5]]
Optimal tunings:
- WE: ~2 = 1201.518 ¢, ~5/4 = 356.557 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 356.457 ¢
Optimal ET sequence: 3de, 7d, 10, 17d
Badness (Sintel): 0.739
Dichotic
In dichotic, 7/4 is found at a stack of two perfect fourths.
Subgroup: 2.3.5.7
Comma list: 25/24, 64/63
Mapping: [⟨1 1 2 4], ⟨0 2 1 -4]]
- WE: ~2 = 1200.802 ¢, ~5/4 = 356.502 ¢
- error map: ⟨+0.802 +11.851 -28.208 +8.374]
- CWE: ~2 = 1200.000 ¢, ~5/4 = 356.275 ¢
- error map: ⟨0.000 +10.595 -30.039 +6.074]
Optimal ET sequence: 3, 7, 10, 17, 27c
Badness (Sintel): 0.951
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 64/63
Mapping: [⟨1 1 2 4 2], ⟨0 2 1 -4 5]]
Optimal tunings:
- WE: ~2 = 1199.504 ¢, ~5/4 = 354.115 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 354.236 ¢
Optimal ET sequence: 7, 10, 17
Badness (Sintel): 1.01
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 40/39, 45/44, 64/63
Mapping: [⟨1 1 2 4 2 4], ⟨0 2 1 -4 5 -1]]
Optimal tunings:
- WE: ~2 = 1199.289 ¢, ~5/4 = 354.156 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 354.340 ¢
Optimal ET sequence: 7, 10, 17, 27ce, 44cce
Badness (Sintel): 0.896
Dichotomic
Subgroup: 2.3.5.7.11
Comma list: 22/21, 25/24, 33/32
Mapping: [⟨1 1 2 4 4], ⟨0 2 1 -4 -2]]
Optimal tunings:
- WE: ~2 = 1203.949 ¢, ~5/4 = 355.239 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 354.024 ¢
Optimal ET sequence: 3, 7, 10e
Badness (Sintel): 1.05
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 22/21, 25/24, 33/32, 40/39
Mapping: [⟨1 1 2 4 4 4], ⟨0 2 1 -4 -2 -1]]
Optimal tunings:
- WE: ~2 = 1202.979 ¢, ~5/4 = 355.193 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 354.254 ¢
Optimal ET sequence: 3, 7, 10e
Badness (Sintel): 0.940
Dichosis
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 64/63
Mapping: [⟨1 1 2 4 5], ⟨0 2 1 -4 -5]]
Optimal tunings:
- WE: ~2 = 1197.526 ¢, ~5/4 = 359.915 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 360.745 ¢
Optimal ET sequence: 3, 7e, 10
Badness (Sintel): 1.37
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 35/33, 40/39, 64/63
Mapping: [⟨1 1 2 4 5 4], ⟨0 2 1 -4 -5 -1]]
Optimal tunings:
- WE: ~2 = 1197.922 ¢, ~5/4 = 360.021 ¢
- CWE: ~2 = 1200.000 ¢, ~5/4 = 360.722 ¢
Optimal ET sequence: 3, 7e, 10
Badness (Sintel): 1.15
Decimal
Decimal tempers out 49/48 and 50/49, and has a semi-octave period for 7/5~10/7 and a hemitwelfth generator for 7/4~12/7. Its ploidacot is diploid dicot. 10edo makes for a good tuning, from which it derives its name. 14edo in the 14c val and 24edo in the 24c val are also among the possibilities.
Subgroup: 2.3.5.7
Comma list: 25/24, 49/48
Mapping: [⟨2 0 3 4], ⟨0 2 1 1]]
- mapping generators: ~7/5, ~7/4
- WE: ~7/5 = 603.286 ¢, ~7/4 = 953.637 ¢ (~7/6 = 252.935 ¢)
- error map: ⟨+6.571 +5.318 -22.821 -2.047]
- CWE: ~7/5 = 600.000 ¢, ~7/4 = 950.957 ¢ (~7/6 = 249.043 ¢)
- error map: ⟨0.000 -0.041 -35.357 -17.869]
Optimal ET sequence: 4, 10, 14c, 24c, 38ccd
Badness (Sintel): 0.717
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 49/48
Mapping: [⟨2 0 3 4 -1], ⟨0 2 1 1 5]]
Optimal tunings:
- WE: ~7/5 = 603.558 ¢, ~7/4 = 952.121 ¢ (~7/6 = 254.996 ¢)
- CWE: ~7/5 = 600.000 ¢, ~7/4 = 948.610 ¢ (~7/6 = 251.390 ¢)
Optimal ET sequence: 4e, 10, 14c, 24c
Badness (Sintel): 0.883
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 25/24, 45/44, 49/48, 91/90
Mapping: [⟨2 0 3 4 -1 1], ⟨0 2 1 1 5 4]]
Optimal tunings:
- WE: ~7/5 = 603.612 ¢, ~7/4 = 953.663 ¢ (~7/6 = 253.562 ¢)
- CWE: ~7/5 = 600.000 ¢, ~7/4 = 950.116 ¢ (~7/6 = 249.884 ¢)
Optimal ET sequence: 4ef, 10, 14cf, 24cf
Badness (Sintel): 0.881
Decimated
Subgroup: 2.3.5.7.11
Comma list: 25/24, 33/32, 49/48
Mapping: [⟨2 0 3 4 10], ⟨0 2 1 1 -2]]
Optimal tunings:
- WE: ~7/5 = 604.535 ¢, ~7/4 = 952.076 ¢ (~7/6 = 256.994 ¢)
- CWE: ~7/5 = 600.000 ¢, ~7/4 = 946.108 ¢ (~7/6 = 253.892 ¢)
Optimal ET sequence: 4, 10e, 14c
Badness (Sintel): 1.04
Decibel
Subgroup: 2.3.5.7.11
Comma list: 25/24, 35/33, 49/48
Mapping: [⟨2 0 3 4 7], ⟨0 2 1 1 0]]
Optimal tunings:
- WE: ~7/5 = 599.404 ¢, ~7/4 = 955.557 ¢ (~8/7 = 243.251 ¢)
- CWE: ~7/5 = 600.000 ¢, ~7/4 = 956.169 ¢ (~8/7 = 243.831 ¢)
Badness (Sintel): 1.07
Sidi
Sidi tempers out 245/243, and splits 5/2~12/5 in two. Its ploidacot is beta-tetracot. This relates it to squares, to which it can be used as a simpler alternative. 14edo in the 14c val can be used as a tuning, in which case it is identical to squares, however.
Subgroup: 2.3.5.7
Comma list: 25/24, 245/243
Mapping: [⟨1 -1 1 -3], ⟨0 4 2 9]]
- mapping generators: ~2, ~14/9
- WE: ~2 = 1207.178 ¢, ~14/9 = 777.414 ¢
- error map: ⟨+7.178 +0.523 -24.308 +6.367]
- CWE: ~2 = 1200.000 ¢, ~14/9 = 773.872 ¢
- error map: ⟨0.000 -6.464 -38.569 -3.973]
Optimal ET sequence: 3d, …, 11cd, 14c
Badness (Sintel): 1.43
11-limit
Subgroup: 2.3.5.7.11
Comma list: 25/24, 45/44, 99/98
Mapping: [⟨1 -1 1 -3 -3], ⟨0 4 2 9 10]]
Optimal tunings:
- WE: ~2 = 1207.200 ¢, ~11/7 = 777.363 ¢
- CWE: ~2 = 1200.000 ¢, ~11/7 = 773.777 ¢
Optimal ET sequence: 3de, …, 11cdee, 14c
Badness (Sintel): 1.09