Hemififths/Chords: Difference between revisions
m Style |
m Categories (todo) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
Chords are named with ups and downs, using pergen #4 (P8, P5/2) in the [http://tallkite.com/misc_files/notation%20guide%20for%20rank-2%20pergens.pdf notation guide for rank-2 pergens]. One up is 7 generators, which is a half-sharp. The tilde ~ means mid, half-way between major and minor. ~4 = ^4 = vA4 and ~5 = v5 = ^d5. The comma (the actual punctuation mark) is pronounced "add", thus C~,7 is "C mid add 7". To facilitate chord naming, lifts and drops are also used. One lift is -17 generators, a half-diminished second. Enharmonic equivalences: vvA1 and v\m2. Cents: ^1 = 50¢ + 3.5c and /1 = 50¢ - 8.5c, where c equals the amount in cents the tempered fifth exceeds 700¢. /1 = ~81/80 = ~64/63 and ^1 = ~33/32. To convert to 41edo, ^1 = 2\41 and /1 = 1\41. | Chords are named with ups and downs, using pergen #4 (P8, P5/2) in the [http://tallkite.com/misc_files/notation%20guide%20for%20rank-2%20pergens.pdf notation guide for rank-2 pergens]. One up is 7 generators, which is a half-sharp. The tilde ~ means mid, half-way between major and minor. ~4 = ^4 = vA4 and ~5 = v5 = ^d5. The comma (the actual punctuation mark) is pronounced "add", thus C~,7 is "C mid add 7". To facilitate chord naming, lifts and drops are also used. One lift is -17 generators, a half-diminished second. Enharmonic equivalences: vvA1 and v\m2. Cents: ^1 = 50¢ + 3.5c and /1 = 50¢ - 8.5c, where c equals the amount in cents the tempered fifth exceeds 700¢. /1 = ~81/80 = ~64/63 and ^1 = ~33/32. To convert to 41edo, ^1 = 2\41 and /1 = 1\41. | ||
The | The ''As harmonics or subharmonics'' column describes otonal chords as harmonics and utonal chords as subharmonics. | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|+Hemififth's genchain | |+Hemififth's genchain | ||
Line 100: | Line 101: | ||
| ^A2<br>\M3 | | ^A2<br>\M3 | ||
|} | |} | ||
{{Todo|inline=1 | {{Todo|complete table|inline=1}} | ||
== Triads == | == Triads == | ||
Line 111: | Line 112: | ||
! Name | ! Name | ||
! Inversion | ! Inversion | ||
! As | ! As harmonics<br>or subharmonics | ||
|- | |- | ||
| 1 | | 1 | ||
Line 127: | Line 128: | ||
| C~7no5 | | C~7no5 | ||
| | | | ||
| 11 | | 1/(11:9:6) | ||
|- | |- | ||
| 3 | | 3 | ||
Line 150: | Line 151: | ||
| ambitonal | | ambitonal | ||
| C2 ''or'' C4 | | C2 ''or'' C4 | ||
| 1-4/3- | | 1-4/3-3/2 | ||
| | | | ||
|- | |- | ||
Line 167: | Line 168: | ||
| C~(\b5) | | C~(\b5) | ||
| | | | ||
| 11 | | 1/(11:9:8) | ||
|- | |- | ||
| 8 | | 8 | ||
Line 183: | Line 184: | ||
| C~2 | | C~2 | ||
| 1-12/11-3/2 | | 1-12/11-3/2 | ||
| 12 | | 1/(12:11:8) | ||
|- | |- | ||
| 10 | | 10 | ||
Line 247: | Line 248: | ||
| C(^5) | | C(^5) | ||
| | | | ||
| 14 | | 1/(14:11:9) | ||
|- | |- | ||
| 18 | | 18 | ||
Line 271: | Line 272: | ||
| C~2/6 | | C~2/6 | ||
| 1-12/11-12/7 | | 1-12/11-12/7 | ||
| 12 | | 1/(12:11:7) | ||
|- | |- | ||
| 21 | | 21 | ||
Line 279: | Line 280: | ||
| C/ | | C/ | ||
| 1-9/7-3/2 | | 1-9/7-3/2 | ||
| 9 | | 1/(9:7:6) | ||
|- | |- | ||
| 22 | | 22 | ||
Line 359: | Line 360: | ||
| C(~5) | | C(~5) | ||
| 1-14/11-16/11 | | 1-14/11-16/11 | ||
| 11:14 | | 8:11:14 | ||
|- | |- | ||
| 32 | | 32 | ||
Line 367: | Line 368: | ||
| C,\7 | | C,\7 | ||
| | | | ||
| 14 | | 1/(14:11:8) | ||
|- | |- | ||
| 33 | | 33 | ||
Line 375: | Line 376: | ||
| C/,2no5 | | C/,2no5 | ||
| 1-9/8-9/7 | | 1-9/8-9/7 | ||
| 9 | | 1/(9:8:7) | ||
|- | |- | ||
| 34 | | 34 | ||
Line 383: | Line 384: | ||
| C\m7no5 | | C\m7no5 | ||
| | | | ||
| 7 | | 1/(7:6:4) | ||
|- | |- | ||
| 35 | | 35 | ||
Line 423: | Line 424: | ||
| C(b5) | | C(b5) | ||
| | | | ||
| 20 | | 1/(20:14:11) | ||
|- | |- | ||
| 40 | | 40 | ||
Line 455: | Line 456: | ||
| C\2(\~5) | | C\2(\~5) | ||
| | | | ||
| 10 | | 1/(10:9:7) | ||
|- | |- | ||
| 44 | | 44 | ||
Line 471: | Line 472: | ||
| | | | ||
| | | | ||
| 20 | | 1/(20:18:11) | ||
|- | |- | ||
| 46 | | 46 | ||
Line 503: | Line 504: | ||
| C/dim | | C/dim | ||
| 1-7/6-7/5 | | 1-7/6-7/5 | ||
| 10 | | 1/(10:7:6) | ||
|- | |- | ||
| 50 | | 50 | ||
Line 511: | Line 512: | ||
| | | | ||
| | | | ||
| 20 | | 1/(20:12:11) | ||
|- | |- | ||
| 51 | | 51 | ||
Line 519: | Line 520: | ||
| C/7no3 | | C/7no3 | ||
| 1-3/2-9/5 | | 1-3/2-9/5 | ||
| 9 | | 1/(9:6:5) | ||
|- | |- | ||
| 52 | | 52 | ||
Line 551: | Line 552: | ||
| C\(\~5) | | C\(\~5) | ||
| | | | ||
| 10 | | 1/(10:8:7) | ||
|- | |- | ||
| 56 | | 56 | ||
Line 567: | Line 568: | ||
| C\,\~7no5 | | C\,\~7no5 | ||
| | | | ||
| 20 | | 1/(20:16:11) | ||
|- | |- | ||
| 58 | | 58 | ||
Line 575: | Line 576: | ||
| C/9no35 | | C/9no35 | ||
| 1-9/5-9/4 | | 1-9/5-9/4 | ||
| 9 | | 1/(9:5:4) | ||
|- | |- | ||
| 59 | | 59 | ||
Line 583: | Line 584: | ||
| C/m | | C/m | ||
| 1-6/5-3/2 | | 1-6/5-3/2 | ||
| 6 | | 1/(6:5:4) | ||
|} | |} | ||
Line 595: | Line 596: | ||
! Name | ! Name | ||
! Inversion | ! Inversion | ||
! As | ! As harmonics<br>or subharmonics | ||
|- | |- | ||
| 1 | | 1 | ||
Line 643: | Line 644: | ||
| C2~6 ''or''<br>C4~9 | | C2~6 ''or''<br>C4~9 | ||
| 1-9/8-3/2-18/11<br>1-4/3-3/2-24/11 | | 1-9/8-3/2-18/11<br>1-4/3-3/2-24/11 | ||
| 18 | | 1/(18:16:12:11)<br>1/(24:18:16:11) | ||
|- | |- | ||
| 7 | | 7 | ||
Line 763: | Line 764: | ||
| C/,~6 | | C/,~6 | ||
| 1-9/7-3/2-18/11 | | 1-9/7-3/2-18/11 | ||
| 18 | | 1/(18:14:12:11) | ||
|- | |- | ||
| 22 | | 22 | ||
Line 897: | Line 898: | ||
| 1-9/8-11/8-7/4 | | 1-9/8-11/8-7/4 | ||
| otonal | | otonal | ||
| C~4\7,9 | | C~4\7,9 ''or'' C~,7(^5) | ||
| 1-11/9-14/9-16/9 | | 1-11/9-14/9-16/9 | ||
| 9:11:14:16 | | 9:11:14:16 | ||
Line 947: | Line 948: | ||
| | | | ||
| | | | ||
| 14 | | 1/(14:11:9:8) | ||
|- | |- | ||
| 45 | | 45 | ||
Line 963: | Line 964: | ||
| | | | ||
| | | | ||
| 14 | | 1/(14:12:11:8) | ||
|- | |- | ||
| 47 | | 47 | ||
Line 971: | Line 972: | ||
| C/,9 | | C/,9 | ||
| 1-9/7-3/2-9/4 | | 1-9/7-3/2-9/4 | ||
| 9 | | 1/(9:7:6:4) | ||
|- | |- | ||
| 48 | | 48 | ||
Line 1,155: | Line 1,156: | ||
| | | | ||
| | | | ||
| 20 | | 1/(20:18:14:11) | ||
|- | |- | ||
| 71 | | 71 | ||
Line 1,211: | Line 1,212: | ||
| | | | ||
| | | | ||
| 20 | | 1/(20:14:12:11) | ||
|- | |- | ||
| 78 | | 78 | ||
Line 1,219: | Line 1,220: | ||
| C/7 | | C/7 | ||
| 1-9/7-3/2-9/5 | | 1-9/7-3/2-9/5 | ||
| 9 | | 1/(9:7:6:5) | ||
|- | |- | ||
| 79 | | 79 | ||
Line 1,227: | Line 1,228: | ||
| C/7~13no3 | | C/7~13no3 | ||
| 1-3/2-18/11-9/5 | | 1-3/2-18/11-9/5 | ||
| 18 | | 1/(18:12:11:10) | ||
|- | |- | ||
| 80 | | 80 | ||
Line 1,299: | Line 1,300: | ||
| C,\7(b5) | | C,\7(b5) | ||
| 1-14/11-7/5-7/4 | | 1-14/11-7/5-7/4 | ||
| 20 | | 1/(20:16:14:11) | ||
|- | |- | ||
| 89 | | 89 | ||
Line 1,307: | Line 1,308: | ||
| C/9no5 | | C/9no5 | ||
| 1-9/7-9/5-9/4 | | 1-9/7-9/5-9/4 | ||
| 10 | | 1/(10:9:8:7) | ||
|- | |- | ||
| 90 | | 90 | ||
Line 1,323: | Line 1,324: | ||
| C2~6^7no5 | | C2~6^7no5 | ||
| 1-18/11-9/5-9/4 | | 1-18/11-9/5-9/4 | ||
| 20 | | 1/(20:18:16:11) | ||
|- | |- | ||
| 92 | | 92 | ||
Line 1,339: | Line 1,340: | ||
| C/m6<br>C\m7(b5) | | C/m6<br>C\m7(b5) | ||
| 1-6/5-3/2-12/7<br>1-7/6-7/5-7/4 | | 1-6/5-3/2-12/7<br>1-7/6-7/5-7/4 | ||
| 12 | | 1/(12:10:8:7)<br>1/(7:6:5:4) | ||
|- | |- | ||
| 94 | | 94 | ||
Line 1,347: | Line 1,348: | ||
| C/m,~9 | | C/m,~9 | ||
| 1-6/5-3/2-24/11 | | 1-6/5-3/2-24/11 | ||
| 24 | | 1/(24:20:18:11) | ||
|- | |- | ||
| 95 | | 95 | ||
Line 1,355: | Line 1,356: | ||
| C/9no3 | | C/9no3 | ||
| 1-3/2-9/5-9/4 | | 1-3/2-9/5-9/4 | ||
| 9 | | 1/(9:6:5:4) | ||
|} | |} | ||
Line 1,367: | Line 1,368: | ||
! Name | ! Name | ||
! Inversion | ! Inversion | ||
! As | ! As harmonics<br>or subharmonics | ||
|- | |- | ||
| 1 | | 1 | ||
Line 1,567: | Line 1,568: | ||
| C/,~6,9 | | C/,~6,9 | ||
| 1-9/7-3/2-18/11-9/4 | | 1-9/7-3/2-18/11-9/4 | ||
| 18 | | 1/(18:14:12:11:8) | ||
|- | |- | ||
| 26 | | 26 | ||
Line 1,767: | Line 1,768: | ||
| C/7~6 | | C/7~6 | ||
| 1-9/7-3/2-18/11-9/5 | | 1-9/7-3/2-18/11-9/5 | ||
| 18 | | 1/(18:14:12:11:10) | ||
|- | |- | ||
| 51 | | 51 | ||
Line 1,823: | Line 1,824: | ||
| C/9~6no5 | | C/9~6no5 | ||
| 1-9/7-18/11-9/5-9/4 | | 1-9/7-18/11-9/5-9/4 | ||
| 18 | | 1/(18:14:11:10:8) | ||
|- | |- | ||
| 58 | | 58 | ||
Line 1,831: | Line 1,832: | ||
| C/m6~9 | | C/m6~9 | ||
| 1-6/5-3/2-12/7-24/11 | | 1-6/5-3/2-12/7-24/11 | ||
| 24 | | 1/(24:20:16:14:11) | ||
|- | |- | ||
| 59 | | 59 | ||
Line 1,839: | Line 1,840: | ||
| C/9 | | C/9 | ||
| 1-9/7-3/2-9/5-9/4 | | 1-9/7-3/2-9/5-9/4 | ||
| 9 | | 1/(9:7:6:5:4) | ||
|- | |- | ||
| 60 | | 60 | ||
Line 1,847: | Line 1,848: | ||
| C/9~6no3 | | C/9~6no3 | ||
| 1-3/2-18/11-9/5-9/4 | | 1-3/2-18/11-9/5-9/4 | ||
| 18 | | 1/(18:12:11:10:8) | ||
|} | |} | ||
Line 1,859: | Line 1,860: | ||
! Name | ! Name | ||
! Inversion | ! Inversion | ||
! As | ! As harmonics<br>or subharmonics | ||
|- | |- | ||
| 1 | | 1 | ||
Line 1,888: | Line 1,889: | ||
| 0-4-5-8-9-13 | | 0-4-5-8-9-13 | ||
| 1-9/8-11/8-14/11-14/9-7/4 | | 1-9/8-11/8-14/11-14/9-7/4 | ||
| | | hemififths | ||
| | | | ||
| | | | ||
Line 1,963: | Line 1,964: | ||
| C/9~6 | | C/9~6 | ||
| 1-9/7-3/2-18/11-9/5-9/4 | | 1-9/7-3/2-18/11-9/5-9/4 | ||
| 18 | | 1/(18:14:12:11:10:8) | ||
|} | |} | ||
Latest revision as of 20:52, 29 July 2025
Below are listed the 11-odd-limit dyadic chords of 11-limit hemififths temperament. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismic, by 896/891 pentacircle, by 243/242 rastmic, and by 1344/1331 hemimin. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove. Those requiring both 441/440 and 896/891 are labeled pele. Those requiring any two of 243/242, 896/891 or 1344/1331 are labeled parahemif. If the full hemififths is required because of the tempering out of three independent hemififths commas, the chord is labeled hemififths.
A striking feature of these hemififths chords is that essentially just chords tend to be of higher complexity than essentially tempered chords. Hemififths has mos scales of size 7, 10, 17 and 24, and even seven notes are well-supplied with chords, mostly but by no means entirely essentially tempered chords. Extending consideration to the 13-limit adds even more such chords.
Chords are named with ups and downs, using pergen #4 (P8, P5/2) in the notation guide for rank-2 pergens. One up is 7 generators, which is a half-sharp. The tilde ~ means mid, half-way between major and minor. ~4 = ^4 = vA4 and ~5 = v5 = ^d5. The comma (the actual punctuation mark) is pronounced "add", thus C~,7 is "C mid add 7". To facilitate chord naming, lifts and drops are also used. One lift is -17 generators, a half-diminished second. Enharmonic equivalences: vvA1 and v\m2. Cents: ^1 = 50¢ + 3.5c and /1 = 50¢ - 8.5c, where c equals the amount in cents the tempered fifth exceeds 700¢. /1 = ~81/80 = ~64/63 and ^1 = ~33/32. To convert to 41edo, ^1 = 2\41 and /1 = 1\41.
The As harmonics or subharmonics column describes otonal chords as harmonics and utonal chords as subharmonics.
Genspan | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | … | 20 | 21 | … | 23 | … | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cents (41edo) | 0 | 351 | 702 | 1054 | 205 | 556 | 907 | 59 | 410 | 761 | 1112 | 263 | 615 | 966 | … | 1024 | 176 | … | 878 | … | 380 |
Ratio | 1/1 | 11/9 16/13 |
3/2 | 11/6 24/13 |
9/8 | 11/8 18/13 |
27/16 22/13 |
28/27 33/32 |
14/11 | 14/9 | 40/21 21/11 |
7/6 | 10/7 | 7/4 | … | 20/11 | 10/9 | … | 5/3 | … | 5/4 |
Interval | P1 | ~3 | P5 | ~7 | M2 | ~4 \b5 |
M6 | ^1 \m2 |
M3 | ^5 \m6 |
M7 | ^M2 \m3 |
A4 \~5 |
^M6 \m7 |
… | A6 \~7 |
^A1 \M2 |
… | ^A5 \M6 |
… | ^A2 \M3 |
Triads
# | Genspans | Transversal | Type | Name | Inversion | As harmonics or subharmonics |
---|---|---|---|---|---|---|
1 | 0-1-2 | 1-11/9-3/2 | rastmic | C~ | ||
2 | 0-1-3 | 1-11/9-11/6 | utonal | C~7no5 | 1/(11:9:6) | |
3 | 0-2-3 | 1-3/2-11/6 | otonal | C~7no3 | 6:9:11 | |
4 | 0-1-4 | 1-11/9-9/8 | rastmic | C~,9no5 | ||
5 | 0-2-4 | 1-3/2-9/8 | ambitonal | C2 or C4 | 1-4/3-3/2 | |
6 | 0-3-4 | 1-11/6-9/8 | rastmic | C~9no35 | ||
7 | 0-1-5 | 1-11/9-11/8 | utonal | C~(\b5) | 1/(11:9:8) | |
8 | 0-2-5 | 1-3/2-11/8 | otonal | C~7sus4no5 | 1-4/3-11/6 | 6:8:11 |
9 | 0-3-5 | 1-11/6-11/8 | utonal | C~2 | 1-12/11-3/2 | 1/(12:11:8) |
10 | 0-4-5 | 1-9/8-11/8 | otonal | C~,7no5 | 1-11/9-16/9 | 9:11:16 |
11 | 0-3-8 | 1-11/6-14/11 | hemimin | C,~7no5 | ||
12 | 0-4-8 | 1-9/8-14/11 | pentacircle | C,9no5 | ||
13 | 0-5-8 | 1-11/8-14/11 | hemimin | C(\b5) | ||
14 | 0-1-9 | 1-11/9-14/9 | otonal | C~(^5) | 9:11:14 | |
15 | 0-4-9 | 1-9/8-14/9 | pentacircle | C7~4no5 | 1-11/8-16/9 | |
16 | 0-5-9 | 1-11/8-14/9 | pentacircle | C2(~5) or C/,7no5 |
1-9/8-13/9 1-9/7-16/9 |
|
17 | 0-8-9 | 1-14/11-14/9 | utonal | C(^5) | 1/(14:11:9) | |
18 | 0-2-11 | 1-3/2-7/6 | otonal | C\m | 6:7:9 | |
19 | 0-3-11 | 1-11/6-7/6 | otonal | C\m~7no5 | 6:7:11 | |
20 | 0-8-11 | 1-14/11-7/6 | utonal | C~2/6 | 1-12/11-12/7 | 1/(12:11:7) |
21 | 0-9-11 | 1-14/9-7/6 | utonal | C/ | 1-9/7-3/2 | 1/(9:7:6) |
22 | 0-1-12 | 1-11/9-10/7 | swetismic | C~(\~5) | ||
23 | 0-3-12 | 1-11/6-10/7 | swetismic | C/(b5) | 1-9/7-7/5 | |
24 | 0-4-12 | 1-9/8-10/7 | werckismic | C2(\~5) | ||
25 | 0-8-12 | 1-14/11-10/7 | werckismic | C(\~5) | ||
26 | 0-9-12 | 1-14/9-10/7 | swetismic | C~2(b5) | 1-12/11-7/5 | |
27 | 0-11-12 | 1-7/6-10/7 | swetismic | C\m(\~5) | ||
28 | 0-1-13 | 1-11/9-7/4 | werckismic | C~,\7no5 | ||
29 | 0-2-13 | 1-3/2-7/4 | otonal | C\7no3 | 4:6:7 | |
30 | 0-4-13 | 1-9/8-7/4 | otonal | C\9no35 | 4:7:9 | |
31 | 0-5-13 | 1-11/8-7/4 | otonal | C(~5) | 1-14/11-16/11 | 8:11:14 |
32 | 0-8-13 | 1-14/11-7/4 | utonal | C,\7 | 1/(14:11:8) | |
33 | 0-9-13 | 1-14/9-7/4 | utonal | C/,2no5 | 1-9/8-9/7 | 1/(9:8:7) |
34 | 0-11-13 | 1-7/6-7/4 | utonal | C\m7no5 | 1/(7:6:4) | |
35 | 0-12-13 | 1-10/7-7/4 | werckismic | C~(b5) | 1-11/9-7/5 | |
36 | 0-8-20 | 1-14/11-20/11 | otonal | C,\~7no5 | 11:14:20 | |
37 | 0-9-20 | 1-14/9-20/11 | swetismic | |||
38 | 0-11-20 | 1-7/6-20/11 | swetismic | C\m\~7no5 | ||
39 | 0-12-20 | 1-10/7-20/11 | utonal | C(b5) | 1/(20:14:11) | |
40 | 0-1-21 | 1-11/9-10/9 | otonal | C~,\9no5 | 9:10:11 | |
41 | 0-8-21 | 1-14/11-10/9 | werckismic | C,\9no5 | ||
42 | 0-9-21 | 1-14/9-10/9 | otonal | C/(\~5) | 1-9/7-10/7 | 7:9:10 |
43 | 0-12-21 | 1-10/7-10/9 | utonal | C\2(\~5) | 1/(10:9:7) | |
44 | 0-13-21 | 1-7/4-10/9 | werckismic | C\2\m7no5 | ||
45 | 0-20-21 | 1-20/11-10/9 | utonal | 1/(20:18:11) | ||
46 | 0-2-23 | 1-3/2-5/3 | otonal | C\m7no5 | 1-6/5-9/5 | 5:6:9 |
47 | 0-3-23 | 1-11/6-5/3 | otonal | 6:10:11 | ||
48 | 0-11-23 | 1-7/6-5/3 | otonal | C\m6no5 | 6:7:10 | |
49 | 0-12-23 | 1-10/7-5/3 | utonal | C/dim | 1-7/6-7/5 | 1/(10:7:6) |
50 | 0-20-23 | 1-20/11-5/3 | utonal | 1/(20:12:11) | ||
51 | 0-21-23 | 1-10/9-5/3 | utonal | C/7no3 | 1-3/2-9/5 | 1/(9:6:5) |
52 | 0-2-25 | 1-3/2-5/4 | otonal | C\ | 4:5:6 | |
53 | 0-4-25 | 1-9/8-5/4 | otonal | C\,9no5 | 4:5:9 | |
54 | 0-5-25 | 1-11/8-5/4 | otonal | C\(\b5) | 8:10:11 | |
55 | 0-12-25 | 1-10/7-5/4 | utonal | C\(\~5) | 1/(10:8:7) | |
56 | 0-13-25 | 1-7/4-5/4 | otonal | C\7no5 | 4:5:6 | |
57 | 0-20-25 | 1-20/11-5/4 | utonal | C\,\~7no5 | 1/(20:16:11) | |
58 | 0-21-25 | 1-10/9-5/4 | utonal | C/9no35 | 1-9/5-9/4 | 1/(9:5:4) |
59 | 0-23-25 | 1-5/3-5/4 | utonal | C/m | 1-6/5-3/2 | 1/(6:5:4) |
Tetrads
# | Genspans | Transversal | Type | Name | Inversion | As harmonics or subharmonics |
---|---|---|---|---|---|---|
1 | 0-1-2-3 | 1-11/9-3/2-11/6 | rastmic | C~7 | ||
2 | 0-1-2-4 | 1-11/9-3/2-9/8 | rastmic | C~,9 | ||
3 | 0-1-3-4 | 1-11/9-11/6-9/8 | rastmic | C~9no5 | ||
4 | 0-2-3-4 | 1-3/2-11/6-9/8 | rastmic | C~9no3 | ||
5 | 0-1-2-5 | 1-11/9-3/2-11/8 | rastmic | C~,~11 | ||
6 | 0-1-3-5 | 1-11/9-11/6-11/8 | utonal | C2~6 or C4~9 |
1-9/8-3/2-18/11 1-4/3-3/2-24/11 |
1/(18:16:12:11) 1/(24:18:16:11) |
7 | 0-2-3-5 | 1-3/2-11/6-11/8 | ambitonal | C~4~7 | ||
8 | 0-1-4-5 | 1-11/9-9/8-11/8 | rastmic | |||
9 | 0-2-4-5 | 1-3/2-9/8-11/8 | otonal | C4~7 | 1-4/3-3/2-11/6 | 6:8:9:11 |
10 | 0-3-4-5 | 1-11/6-9/8-11/8 | rastmic | C~11no35 | ||
11 | 0-3-4-8 | 1-11/6-9/8-14/11 | parahemif | C9(~7)no5 | ||
12 | 0-3-5-8 | 1-11/6-11/8-14/11 | hemimin | C~2~11 | 1-12/11-11/8-3/2 | |
13 | 0-4-5-8 | 1-9/8-11/8-14/11 | parahemif | C~,~9 | 1-11/9-3/2-13/12 | |
14 | 0-1-4-9 | 1-11/9-9/8-14/9 | parahemif | C~,9(^5) | ||
15 | 0-1-5-9 | 1-11/9-11/8-14/9 | pentacircle | C,~6,9no5 | 1-14/11-18/11-9/4 | |
16 | 0-4-5-9 | 1-9/8-11/8-14/9 | pentacircle | C~,7(\b5) | 1-11/9-11/8-16/9 | |
17 | 0-4-8-9 | 1-9/8-14/11-14/9 | pentacircle | |||
18 | 0-5-8-9 | 1-11/8-14/11-14/9 | parahemif | |||
19 | 0-2-3-11 | 1-3/2-11/6-7/6 | otonal | C\m~7 | 6:7:9:11 | |
20 | 0-3-8-11 | 1-11/6-14/11-7/6 | hemimin | |||
21 | 0-8-9-11 | 1-14/11-14/9-7/6 | utonal | C/,~6 | 1-9/7-3/2-18/11 | 1/(18:14:12:11) |
22 | 0-1-3-12 | 1-11/9-11/6-10/7 | swetismic | C\m~6 | 1-7/6-3/2-13/8 | |
23 | 0-1-4-12 | 1-11/9-9/8-10/7 | jove | |||
24 | 0-3-4-12 | 1-11/6-9/8-10/7 | jove | |||
25 | 0-3-8-12 | 1-11/6-14/11-10/7 | hemififths | |||
26 | 0-4-8-12 | 1-9/8-14/11-10/7 | pele | C9no5 | 1-9/8-14/11-16/9 | |
27 | 0-1-9-12 | 1-11/9-14/9-10/7 | swetismic | |||
28 | 0-4-9-12 | 1-9/8-14/9-10/7 | hemififths | |||
29 | 0-8-9-12 | 1-14/11-14/9-10/7 | jove | |||
30 | 0-3-11-12 | 1-11/6-7/6-10/7 | swetismic | |||
31 | 0-8-11-12 | 1-14/11-7/6-10/7 | jove | |||
32 | 0-9-11-12 | 1-14/9-7/6-10/7 | swetismic | |||
33 | 0-1-2-13 | 1-11/9-3/2-7/4 | jove | C~,\7 | ||
34 | 0-1-4-13 | 1-11/9-9/8-7/4 | jove | |||
35 | 0-2-4-13 | 1-3/2-9/8-7/4 | otonal | C\9no3 | 4:6:7:9 | |
36 | 0-1-5-13 | 1-11/9-11/8-7/4 | werckismic | |||
37 | 0-2-5-13 | 1-3/2-11/8-7/4 | otonal | C~4,\7 | 8:11:12:14 | |
38 | 0-4-5-13 | 1-9/8-11/8-7/4 | otonal | C~4\7,9 or C~,7(^5) | 1-11/9-14/9-16/9 | 9:11:14:16 |
39 | 0-4-8-13 | 1-9/8-14/11-7/4 | pentacircle | |||
40 | 0-5-8-13 | 1-11/8-14/11-7/4 | hemimin | |||
41 | 0-1-9-13 | 1-11/9-14/9-7/4 | werckismic | |||
42 | 0-4-9-13 | 1-9/8-14/9-7/4 | pentacircle | |||
43 | 0-5-9-13 | 1-11/8-14/9-7/4 | pentacircle | |||
44 | 0-8-9-13 | 1-14/11-14/9-7/4 | utonal | 1/(14:11:9:8) | ||
45 | 0-2-11-13 | 1-3/2-7/6-7/4 | ambitonal | C\m7 | ||
46 | 0-8-11-13 | 1-14/11-7/6-7/4 | utonal | 1/(14:12:11:8) | ||
47 | 0-9-11-13 | 1-14/9-7/6-7/4 | utonal | C/,9 | 1-9/7-3/2-9/4 | 1/(9:7:6:4) |
48 | 0-1-12-13 | 1-11/9-10/7-7/4 | jove | |||
49 | 0-4-12-13 | 1-9/8-10/7-7/4 | werckismic | |||
50 | 0-8-12-13 | 1-14/11-10/7-7/4 | werckismic | |||
51 | 0-9-12-13 | 1-14/9-10/7-7/4 | jove | |||
52 | 0-11-12-13 | 1-7/6-10/7-7/4 | jove | C~,/6 | 1-11/9-3/2-12/7 | |
53 | 0-8-9-20 | 1-14/11-14/9-20/11 | swetismic | |||
54 | 0-8-11-20 | 1-14/11-7/6-20/11 | swetismic | |||
55 | 0-9-11-20 | 1-14/9-7/6-20/11 | swetismic | |||
56 | 0-8-12-20 | 1-14/11-10/7-20/11 | werckismic | |||
57 | 0-9-12-20 | 1-14/9-10/7-20/11 | swetismic | |||
58 | 0-11-12-20 | 1-7/6-10/7-20/11 | swetismic | |||
59 | 0-1-9-21 | 1-11/9-14/9-10/9 | otonal | 9:10:11:14 | ||
60 | 0-8-9-21 | 1-14/11-14/9-10/9 | werckismic | |||
61 | 0-1-12-21 | 1-11/9-10/7-10/9 | swetismic | |||
62 | 0-8-12-21 | 1-14/11-10/7-10/9 | werckismic | |||
63 | 0-9-12-21 | 1-14/9-10/7-10/9 | swetismic | |||
64 | 0-1-13-21 | 1-11/9-7/4-10/9 | werckismic | |||
65 | 0-8-13-21 | 1-14/11-7/4-10/9 | werckismic | |||
66 | 0-9-13-21 | 1-14/9-7/4-10/9 | werckismic | |||
67 | 0-12-13-21 | 1-10/7-7/4-10/9 | werckismic | |||
68 | 0-8-20-21 | 1-14/11-20/11-10/9 | werckismic | |||
69 | 0-9-20-21 | 1-14/9-20/11-10/9 | swetismic | |||
70 | 0-12-20-21 | 1-10/7-20/11-10/9 | utonal | 1/(20:18:14:11) | ||
71 | 0-2-3-23 | 1-3/2-11/6-5/3 | otonal | 6:9:10:11 | ||
72 | 0-2-11-23 | 1-3/2-7/6-5/3 | otonal | C\m6 | 6:7:9:10 | |
73 | 0-3-11-23 | 1-11/6-7/6-5/3 | otonal | C\m6~7no5 | 6:7:10:11 | |
74 | 0-3-12-23 | 1-11/6-10/7-5/3 | swetismic | |||
75 | 0-11-12-23 | 1-7/6-10/7-5/3 | swetismic | C\m6(\~5) | ||
76 | 0-11-20-23 | 1-7/6-20/11-5/3 | swetismic | |||
77 | 0-12-20-23 | 1-10/7-20/11-5/3 | utonal | 1/(20:14:12:11) | ||
78 | 0-12-21-23 | 1-10/7-10/9-5/3 | utonal | C/7 | 1-9/7-3/2-9/5 | 1/(9:7:6:5) |
79 | 0-20-21-23 | 1-20/11-10/9-5/3 | utonal | C/7~13no3 | 1-3/2-18/11-9/5 | 1/(18:12:11:10) |
80 | 0-2-4-25 | 1-3/2-9/8-5/4 | otonal | C\,9 | 4:5:6:9 | |
81 | 0-2-5-25 | 1-3/2-11/8-5/4 | otonal | C\,~11 | 8:10:11:12 | |
82 | 0-4-5-25 | 1-9/8-11/8-5/4 | otonal | C\,9(\b5) | 8:9:10:11 | |
83 | 0-4-12-25 | 1-9/8-10/7-5/4 | werckismic | C,9(\~5) | ||
84 | 0-2-13-25 | 1-3/2-7/4-5/4 | otonal | C\7 | 4:5:6:7 | |
85 | 0-4-13-25 | 1-9/8-7/4-5/4 | otonal | C\9no5 | 4:5:7:9 | |
86 | 0-5-13-25 | 1-11/8-7/4-5/4 | otonal | C\7~11no5 | 4:5:7:11 | |
87 | 0-12-13-25 | 1-10/7-7/4-5/4 | werckismic | C\7(\~5) | ||
88 | 0-12-20-25 | 1-10/7-20/11-5/4 | utonal | C,\7(b5) | 1-14/11-7/5-7/4 | 1/(20:16:14:11) |
89 | 0-12-21-25 | 1-10/7-10/9-5/4 | utonal | C/9no5 | 1-9/7-9/5-9/4 | 1/(10:9:8:7) |
90 | 0-13-21-25 | 1-7/4-10/9-5/4 | werckismic | C\7\9no5 | ||
91 | 0-20-21-25 | 1-20/11-10/9-5/4 | utonal | C2~6^7no5 | 1-18/11-9/5-9/4 | 1/(20:18:16:11) |
92 | 0-2-23-25 | 1-3/2-5/3-5/4 | ambitonal | C\6 or C/m7 | 1-6/5-3/2-9/5 | |
93 | 0-12-23-25 | 1-10/7-5/3-5/4 | utonal | C/m6 C\m7(b5) |
1-6/5-3/2-12/7 1-7/6-7/5-7/4 |
1/(12:10:8:7) 1/(7:6:5:4) |
94 | 0-20-23-25 | 1-20/11-5/3-5/4 | utonal | C/m,~9 | 1-6/5-3/2-24/11 | 1/(24:20:18:11) |
95 | 0-21-23-25 | 1-10/9-5/3-5/4 | utonal | C/9no3 | 1-3/2-9/5-9/4 | 1/(9:6:5:4) |
Pentads
# | Genspans | Transversal | Type | Name | Inversion | As harmonics or subharmonics |
---|---|---|---|---|---|---|
1 | 0-1-2-3-4 | 1-11/9-3/2-11/6-9/8 | rastmic | C~9 | ||
2 | 0-1-2-3-5 | 1-11/9-3/2-11/6-11/8 | rastmic | C~11no9 | ||
3 | 0-1-2-4-5 | 1-11/9-3/2-9/8-11/8 | rastmic | C~11no7 | ||
4 | 0-1-3-4-5 | 1-11/9-11/6-9/8-11/8 | rastmic | C~11no5 | ||
5 | 0-2-3-4-5 | 1-3/2-11/6-9/8-11/8 | rastmic | C~11no3 | ||
6 | 0-3-4-5-8 | 1-11/6-9/8-11/8-14/11 | parahemif | |||
7 | 0-1-4-5-9 | 1-11/9-9/8-11/8-14/9 | parahemif | |||
8 | 0-4-5-8-9 | 1-9/8-11/8-14/11-14/9 | parahemif | |||
9 | 0-1-3-4-12 | 1-11/9-11/6-9/8-10/7 | jove | |||
10 | 0-3-4-8-12 | 1-11/6-9/8-14/11-10/7 | hemififths | |||
11 | 0-1-4-9-12 | 1-11/9-9/8-14/9-10/7 | hemififths | |||
12 | 0-4-8-9-12 | 1-9/8-14/11-14/9-10/7 | hemififths | |||
13 | 0-3-8-11-12 | 1-11/6-14/11-7/6-10/7 | hemififths | |||
14 | 0-8-9-11-12 | 1-14/11-14/9-7/6-10/7 | jove | |||
15 | 0-1-2-4-13 | 1-11/9-3/2-9/8-7/4 | jove | C~9(\m7) | ||
16 | 0-1-2-5-13 | 1-11/9-3/2-11/8-7/4 | jove | |||
17 | 0-1-4-5-13 | 1-11/9-9/8-11/8-7/4 | jove | |||
18 | 0-2-4-5-13 | 1-3/2-9/8-11/8-7/4 | otonal | C\9~11no3 | 4:6:7:9:11 | |
19 | 0-4-5-8-13 | 1-9/8-11/8-14/11-7/4 | parahemif | |||
20 | 0-1-4-9-13 | 1-11/9-9/8-14/9-7/4 | hemififths | |||
21 | 0-1-5-9-13 | 1-11/9-11/8-14/9-7/4 | pele | |||
22 | 0-4-5-9-13 | 1-9/8-11/8-14/9-7/4 | pentacircle | |||
23 | 0-4-8-9-13 | 1-9/8-14/11-14/9-7/4 | pentacircle | |||
24 | 0-5-8-9-13 | 1-11/8-14/11-14/9-7/4 | parahemif | |||
25 | 0-8-9-11-13 | 1-14/11-14/9-7/6-7/4 | utonal | C/,~6,9 | 1-9/7-3/2-18/11-9/4 | 1/(18:14:12:11:8) |
26 | 0-1-4-12-13 | 1-11/9-9/8-10/7-7/4 | jove | |||
27 | 0-4-8-12-13 | 1-9/8-14/11-10/7-7/4 | pele | |||
28 | 0-1-9-12-13 | 1-11/9-14/9-10/7-7/4 | jove | |||
29 | 0-4-9-12-13 | 1-9/8-14/9-10/7-7/4 | hemififths | |||
30 | 0-8-9-12-13 | 1-14/11-14/9-10/7-7/4 | jove | |||
31 | 0-8-11-12-13 | 1-14/11-7/6-10/7-7/4 | jove | |||
32 | 0-9-11-12-13 | 1-14/9-7/6-10/7-7/4 | jove | |||
33 | 0-8-9-11-20 | 1-14/11-14/9-7/6-20/11 | swetismic | |||
34 | 0-8-9-12-20 | 1-14/11-14/9-10/7-20/11 | jove | |||
35 | 0-8-11-12-20 | 1-14/11-7/6-10/7-20/11 | jove | |||
36 | 0-9-11-12-20 | 1-14/9-7/6-10/7-20/11 | swetismic | |||
37 | 0-1-9-12-21 | 1-11/9-14/9-10/7-10/9 | swetismic | |||
38 | 0-8-9-12-21 | 1-14/11-14/9-10/7-10/9 | jove | |||
39 | 0-1-9-13-21 | 1-11/9-14/9-7/4-10/9 | werckismic | |||
40 | 0-8-9-13-21 | 1-14/11-14/9-7/4-10/9 | werckismic | |||
41 | 0-1-12-13-21 | 1-11/9-10/7-7/4-10/9 | jove | |||
42 | 0-8-12-13-21 | 1-14/11-10/7-7/4-10/9 | werckismic | |||
43 | 0-9-12-13-21 | 1-14/9-10/7-7/4-10/9 | jove | |||
44 | 0-8-9-20-21 | 1-14/11-14/9-20/11-10/9 | jove | |||
45 | 0-8-12-20-21 | 1-14/11-10/7-20/11-10/9 | werckismic | |||
46 | 0-9-12-20-21 | 1-14/9-10/7-20/11-10/9 | swetismic | |||
47 | 0-2-3-11-23 | 1-3/2-11/6-7/6-5/3 | otonal | C\m6~7 | 6:7:9:10:11 | |
48 | 0-3-11-12-23 | 1-11/6-7/6-10/7-5/3 | swetismic | |||
49 | 0-11-12-20-23 | 1-7/6-10/7-20/11-5/3 | swetismic | |||
50 | 0-12-20-21-23 | 1-10/7-20/11-10/9-5/3 | utonal | C/7~6 | 1-9/7-3/2-18/11-9/5 | 1/(18:14:12:11:10) |
51 | 0-2-4-5-25 | 1-3/2-9/8-11/8-5/4 | otonal | C\,9~11 | 4:5:6:9:11 | |
52 | 0-2-4-13-25 | 1-3/2-9/8-7/4-5/4 | otonal | C\9 | 4:5:6:7:9 | |
53 | 0-2-5-13-25 | 1-3/2-11/8-7/4-5/4 | otonal | C\7~11 | 4:5:6:7:11 | |
54 | 0-4-5-13-25 | 1-9/8-11/8-7/4-5/4 | otonal | C\9~11no5 | 4:5:7:9:11 | |
55 | 0-4-12-13-25 | 1-9/8-10/7-7/4-5/4 | werckismic | C\9(\~5) | ||
56 | 0-12-13-21-25 | 1-10/7-7/4-10/9-5/4 | werckismic | |||
57 | 0-12-20-21-25 | 1-10/7-20/11-10/9-5/4 | utonal | C/9~6no5 | 1-9/7-18/11-9/5-9/4 | 1/(18:14:11:10:8) |
58 | 0-12-20-23-25 | 1-10/7-20/11-5/3-5/4 | utonal | C/m6~9 | 1-6/5-3/2-12/7-24/11 | 1/(24:20:16:14:11) |
59 | 0-12-21-23-25 | 1-10/7-10/9-5/3-5/4 | utonal | C/9 | 1-9/7-3/2-9/5-9/4 | 1/(9:7:6:5:4) |
60 | 0-20-21-23-25 | 1-20/11-10/9-5/3-5/4 | utonal | C/9~6no3 | 1-3/2-18/11-9/5-9/4 | 1/(18:12:11:10:8) |
Hexads
# | Genspans | Transversal | Type | Name | Inversion | As harmonics or subharmonics |
---|---|---|---|---|---|---|
1 | 0-1-2-3-4-5 | 1-11/9-3/2-11/6-9/8-11/8 | rastmic | C~11 | ||
2 | 0-1-2-4-5-13 | 1-11/9-3/2-9/8-11/8-7/4 | jove | C~11(\m7) | ||
3 | 0-1-4-5-9-13 | 1-11/9-9/8-11/8-14/9-7/4 | hemififths | |||
4 | 0-4-5-8-9-13 | 1-9/8-11/8-14/11-14/9-7/4 | hemififths | |||
5 | 0-1-4-9-12-13 | 1-11/9-9/8-14/9-10/7-7/4 | hemififths | |||
6 | 0-4-8-9-12-13 | 1-9/8-14/11-14/9-10/7-7/4 | hemififths | |||
7 | 0-8-9-11-12-13 | 1-14/11-14/9-7/6-10/7-7/4 | jove | |||
8 | 0-8-9-11-12-20 | 1-14/11-14/9-7/6-10/7-20/11 | jove | |||
9 | 0-1-9-12-13-21 | 1-11/9-14/9-10/7-7/4-10/9 | jove | |||
10 | 0-8-9-12-13-21 | 1-14/11-14/9-10/7-7/4-10/9 | jove | |||
11 | 0-8-9-12-20-21 | 1-14/11-14/9-10/7-20/11-10/9 | jove | |||
12 | 0-2-4-5-13-25 | 1-3/2-9/8-11/8-7/4-5/4 | otonal | C\9~11 | 4:5:6:7:9:11 | |
13 | 0-12-20-21-23-25 | 1-10/7-20/11-10/9-5/3-5/4 | utonal | C/9~6 | 1-9/7-3/2-18/11-9/5-9/4 | 1/(18:14:12:11:10:8) |