82edo: Difference between revisions
mNo edit summary Tags: Mobile edit Mobile web edit |
→Instruments: Insert music section after this, starting with Bryan Deister's ''microtonal improvisation in 82edo'' (2025) |
||
(22 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
[[ | == Theory == | ||
82edo's [[patent val]] is [[contorted]] in the [[11-limit]], since {{nowrap|82 {{=}} 2 × 41}}. In the [[13-limit]] the patent val tempers out [[169/168]] and [[676/675]], and in the [[17-limit]] tempers out [[273/272]]. It provides the optimal patent val for [[soothsaying]] temperament and [[support]]s [[baladic]] temperament. The 82d val tempers out [[50/49]] and is an excellent tuning for [[astrology]] and [[byhearted]], surpassing their optimal patent vals. The alternative 82e val tempers out [[121/120]] instead. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|82}} | |||
=== Subsets and supersets === | |||
82edo contains [[2edo]] and [[41edo]] as subsets. [[164edo]], which doubles it, is a notable tuning. | |||
A step of 82edo is exactly 30 [[mina]]s. | |||
== Intervals == | |||
{| class="wikitable right-1 right-2 left-3 left-4 left-5" | |||
|- | |||
! rowspan="2" | # | |||
! rowspan="2" | Cents | |||
! rowspan="2" | Approximate ratios* | |||
! colspan="2" | Additional ratios | |||
|- | |||
! Using the 82e val | |||
! Using the patent val | |||
|- | |||
| 0 | |||
| 0.000 | |||
| 1/1 | |||
| 1/1 | |||
| 1/1 | |||
|- | |||
| 1 | |||
| 14.634 | |||
| ''65/64'', 91/90 | |||
| ''55/54'' | |||
| | |||
|- | |||
| 2 | |||
| 29.268 | |||
| 49/48, 50/49, ''81/80'', ''126/125'' | |||
| | |||
| 45/44, 55/54 | |||
|- | |||
| 3 | |||
| 43.902 | |||
| 40/39 | |||
| ''33/32'', ''45/44'' | |||
| | |||
|- | |||
| 4 | |||
| 58.537 | |||
| ''25/24'', 28/27, ''36/35'' | |||
| | |||
| 33/32 | |||
|- | |||
| 5 | |||
| 73.171 | |||
| 26/25, ''27/26'' | |||
| 22/21 | |||
| | |||
|- | |||
| 6 | |||
| 87.805 | |||
| 19/18, 20/19, 21/20 | |||
| | |||
| ''22/21'' | |||
|- | |||
| 7 | |||
| 102.439 | |||
| 17/16, 18/17 | |||
| | |||
| | |||
|- | |||
| 8 | |||
| 117.073 | |||
| 15/14, 16/15 | |||
| | |||
| | |||
|- | |||
| 9 | |||
| 131.707 | |||
| 14/13, 13/12 | |||
| | |||
| | |||
|- | |||
| 10 | |||
| 146.341 | |||
| | |||
| | |||
| 12/11 | |||
|- | |||
| 11 | |||
| 160.976 | |||
| | |||
| 11/10, ''12/11'' | |||
| | |||
|- | |||
| 12 | |||
| 175.610 | |||
| 10/9, 21/19 | |||
| | |||
| ''11/10'' | |||
|- | |||
| 13 | |||
| 190.244 | |||
| 19/17 | |||
| | |||
| | |||
|- | |||
| 14 | |||
| 204.878 | |||
| 9/8 | |||
| | |||
| | |||
|- | |||
| 15 | |||
| 219.512 | |||
| 17/15 | |||
| | |||
| | |||
|- | |||
| 16 | |||
| 234.146 | |||
| 8/7 | |||
| | |||
| | |||
|- | |||
| 17 | |||
| 248.780 | |||
| 15/13 | |||
| 22/19 | |||
| | |||
|- | |||
| 18 | |||
| 263.415 | |||
| 7/6 | |||
| | |||
| ''22/19'' | |||
|- | |||
| 19 | |||
| 278.049 | |||
| 20/17 | |||
| | |||
| ''13/11'' | |||
|- | |||
| 20 | |||
| 292.683 | |||
| 19/16 | |||
| 13/11 | |||
| | |||
|- | |||
| 21 | |||
| 307.317 | |||
| | |||
| | |||
| | |||
|- | |||
| 22 | |||
| 321.951 | |||
| 6/5 | |||
| | |||
| | |||
|- | |||
| 23 | |||
| 336.585 | |||
| 17/14 | |||
| ''11/9'' | |||
| | |||
|- | |||
| 24 | |||
| 351.220 | |||
| | |||
| | |||
| 11/9 | |||
|- | |||
| 25 | |||
| 365.854 | |||
| 16/13, 21/17, 26/21 | |||
| | |||
| | |||
|- | |||
| 26 | |||
| 380.488 | |||
| 5/4 | |||
| | |||
| | |||
|- | |||
| 27 | |||
| 395.122 | |||
| | |||
| | |||
| | |||
|- | |||
| 28 | |||
| 409.756 | |||
| 19/15, 24/19 | |||
| | |||
| ''14/11'' | |||
|- | |||
| 29 | |||
| 424.390 | |||
| | |||
| 14/11 | |||
| | |||
|- | |||
| 30 | |||
| 439.024 | |||
| 9/7 | |||
| ''22/17'' | |||
| | |||
|- | |||
| 31 | |||
| 453.659 | |||
| 13/10 | |||
| | |||
| 22/17 | |||
|- | |||
| 32 | |||
| 468.293 | |||
| 17/13, 21/16 | |||
| | |||
| | |||
|- | |||
| 33 | |||
| 482.927 | |||
| | |||
| | |||
| | |||
|- | |||
| 34 | |||
| 497.561 | |||
| 4/3 | |||
| | |||
| | |||
|- | |||
| 35 | |||
| 512.195 | |||
| | |||
| | |||
| | |||
|- | |||
| 36 | |||
| 526.829 | |||
| 19/14 | |||
| | |||
| ''15/11'' | |||
|- | |||
| 37 | |||
| 541.463 | |||
| 26/19 | |||
| ''11/8'', 15/11 | |||
| | |||
|- | |||
| 38 | |||
| 556.098 | |||
| | |||
| | |||
| 11/8 | |||
|- | |||
| 39 | |||
| 570.732 | |||
| ''18/13'' | |||
| | |||
| | |||
|- | |||
| 40 | |||
| 585.366 | |||
| 7/5 | |||
| | |||
| | |||
|- | |||
| 41 | |||
| 600.000 | |||
| 17/12, 24/17 | |||
| | |||
| | |||
|- | |||
| … | |||
| … | |||
| | |||
| | |||
| | |||
|} | |||
<nowiki />* As a no-11 19-limit temperament | |||
== Notation == | |||
=== Ups and downs notation === | |||
60edo can be notated using [[ups and downs notation]] using [[Helmholtz–Ellis]] accidentals: | |||
{{Sharpness-sharp8}} | |||
== Approximation to JI == | |||
=== Zeta peak index === | |||
{{ZPI | |||
| zpi = 448 | |||
| steps = 81.9541455954050 | |||
| step size = 14.6423343356444 | |||
| tempered height = 6.653983 | |||
| pure height = 5.154524 | |||
| integral = 0.941321 | |||
| gap = 14.718732 | |||
| octave = 1200.67141552284 | |||
| consistent = 8 | |||
| distinct = 8 | |||
}} | |||
== Instruments == | |||
* [[Lumatone mapping for 82edo]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/p9xUY8EU7Zg ''microtonal improvisation in 82edo''] (2025) |
Latest revision as of 21:30, 14 July 2025
← 81edo | 82edo | 83edo → |
82 equal divisions of the octave (abbreviated 82edo or 82ed2), also called 82-tone equal temperament (82tet) or 82 equal temperament (82et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 82 equal parts of about 14.6 ¢ each. Each step represents a frequency ratio of 21/82, or the 82nd root of 2.
Theory
82edo's patent val is contorted in the 11-limit, since 82 = 2 × 41. In the 13-limit the patent val tempers out 169/168 and 676/675, and in the 17-limit tempers out 273/272. It provides the optimal patent val for soothsaying temperament and supports baladic temperament. The 82d val tempers out 50/49 and is an excellent tuning for astrology and byhearted, surpassing their optimal patent vals. The alternative 82e val tempers out 121/120 instead.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.48 | -5.83 | -2.97 | +4.78 | -6.38 | -2.52 | -4.83 | +0.99 | -5.19 | -3.57 |
Relative (%) | +0.0 | +3.3 | -39.8 | -20.3 | +32.7 | -43.6 | -17.2 | -33.0 | +6.8 | -35.4 | -24.4 | |
Steps (reduced) |
82 (0) |
130 (48) |
190 (26) |
230 (66) |
284 (38) |
303 (57) |
335 (7) |
348 (20) |
371 (43) |
398 (70) |
406 (78) |
Subsets and supersets
82edo contains 2edo and 41edo as subsets. 164edo, which doubles it, is a notable tuning.
A step of 82edo is exactly 30 minas.
Intervals
# | Cents | Approximate ratios* | Additional ratios | |
---|---|---|---|---|
Using the 82e val | Using the patent val | |||
0 | 0.000 | 1/1 | 1/1 | 1/1 |
1 | 14.634 | 65/64, 91/90 | 55/54 | |
2 | 29.268 | 49/48, 50/49, 81/80, 126/125 | 45/44, 55/54 | |
3 | 43.902 | 40/39 | 33/32, 45/44 | |
4 | 58.537 | 25/24, 28/27, 36/35 | 33/32 | |
5 | 73.171 | 26/25, 27/26 | 22/21 | |
6 | 87.805 | 19/18, 20/19, 21/20 | 22/21 | |
7 | 102.439 | 17/16, 18/17 | ||
8 | 117.073 | 15/14, 16/15 | ||
9 | 131.707 | 14/13, 13/12 | ||
10 | 146.341 | 12/11 | ||
11 | 160.976 | 11/10, 12/11 | ||
12 | 175.610 | 10/9, 21/19 | 11/10 | |
13 | 190.244 | 19/17 | ||
14 | 204.878 | 9/8 | ||
15 | 219.512 | 17/15 | ||
16 | 234.146 | 8/7 | ||
17 | 248.780 | 15/13 | 22/19 | |
18 | 263.415 | 7/6 | 22/19 | |
19 | 278.049 | 20/17 | 13/11 | |
20 | 292.683 | 19/16 | 13/11 | |
21 | 307.317 | |||
22 | 321.951 | 6/5 | ||
23 | 336.585 | 17/14 | 11/9 | |
24 | 351.220 | 11/9 | ||
25 | 365.854 | 16/13, 21/17, 26/21 | ||
26 | 380.488 | 5/4 | ||
27 | 395.122 | |||
28 | 409.756 | 19/15, 24/19 | 14/11 | |
29 | 424.390 | 14/11 | ||
30 | 439.024 | 9/7 | 22/17 | |
31 | 453.659 | 13/10 | 22/17 | |
32 | 468.293 | 17/13, 21/16 | ||
33 | 482.927 | |||
34 | 497.561 | 4/3 | ||
35 | 512.195 | |||
36 | 526.829 | 19/14 | 15/11 | |
37 | 541.463 | 26/19 | 11/8, 15/11 | |
38 | 556.098 | 11/8 | ||
39 | 570.732 | 18/13 | ||
40 | 585.366 | 7/5 | ||
41 | 600.000 | 17/12, 24/17 | ||
… | … |
* As a no-11 19-limit temperament
Notation
Ups and downs notation
60edo can be notated using ups and downs notation using Helmholtz–Ellis accidentals:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Approximation to JI
Zeta peak index
Tuning | Strength | Octave (cents) | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Size | Stretch | Consistent | Distinct | |
Tempered | Pure | |||||||||
448zpi | 81.954146 | 14.642334 | 6.653983 | 5.154524 | 0.941321 | 14.718732 | 1200.671416 | 0.671416 | 8 | 8 |