|
|
(9 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox ET}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2012-05-27 09:46:17 UTC</tt>.<br>
| |
| : The original revision id was <tt>339847218</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">19edf falls exactly halfway between 32 and 33 edos. It tempers out the same commas as 65edo with the addition of <-27/19 65/19| (1.425¢) resulting from its inexact 4/1.
| |
|
| |
|
| ==Intervals== | | == Theory == |
| || 1 || 36.945 ||
| | 19edf corresponds to 32.4807 [[edo]] (similar to every second step of [[65edo]]). It tempers out the same commas as 65edo with the addition of {{monzo| -103/19 65/19 }} (1.425{{c}}) resulting from its inexact 4/1. It is not as similar to [[32edo]] as [[13edf]] and [[16edf]] are to [[22edo]] and [[27edo]]. |
| || 2 || 73.89 ||
| |
| || 3 || 110.835 ||
| |
| || 4 || 147.78 ||
| |
| || 5 || 184.725 ||
| |
| || 6 || 221.67 ||
| |
| || 7 || 258.615 ||
| |
| || 8 || 295.56 ||
| |
| || 9 || 332.505 ||
| |
| || 10 || 369.45 ||
| |
| || 11 || 406.395 ||
| |
| || 12 || 443.34 ||
| |
| || 13 || 480.285 ||
| |
| || 14 || 517.23 ||
| |
| || 15 || 554.175 ||
| |
| || 16 || 591.12 ||
| |
| || 17 || 628.065 ||
| |
| || 18 || 665.01 ||
| |
| || 19 || 701.955 ||
| |
| || 20 || 738.9 ||
| |
| || 21 || 775.845 ||
| |
| || 22 || 812.79 ||
| |
| || 23 || 849.735 ||
| |
| || 24 || 886.68 ||
| |
| || 25 || 923.625 ||
| |
| || 26 || 960.57 ||
| |
| || 27 || 997.515 ||
| |
| || 28 || 1034.46 ||
| |
| || 29 || 1071.405 ||
| |
| || 30 || 1108.35 ||
| |
| || 31 || 1145.295 ||
| |
| || 32 || 1182.24 ||
| |
| || 33 || 1219.185 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>19edf</title></head><body>19edf falls exactly halfway between 32 and 33 edos. It tempers out the same commas as 65edo with the addition of &lt;-27/19 65/19| (1.425¢) resulting from its inexact 4/1.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | == Harmonics == |
| <tr>
| | {{Harmonics in equal|19|3|2}} |
| <td>1<br />
| | {{Harmonics in equal|19|3|2|start=12|collapsed=1}} |
| </td>
| |
| <td>36.945<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>73.89<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>110.835<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>147.78<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>184.725<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>221.67<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>258.615<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>295.56<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>332.505<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>369.45<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>406.395<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>443.34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>480.285<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>517.23<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>554.175<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>591.12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>628.065<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>665.01<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>701.955<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>738.9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>775.845<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>812.79<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>849.735<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>886.68<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>923.625<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>960.57<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>997.515<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>1034.46<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>1071.405<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>1108.35<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>1145.295<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>1182.24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>1219.185<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | == Intervals == |
| | {| class="wikitable mw-collapsible" |
| | |+ style="font-size: 105%;" | Intervals of 19edf |
| | |- |
| | ! Degree |
| | ! [[Cent]]s |
| | ! Corresponding<br />JI intervals |
| | ! comments |
| | |- |
| | ! colspan="2" | 0 |
| | | '''exact [[1/1]]''' |
| | | |
| | |- |
| | | 1 |
| | | 36.945 |
| | | |
| | | |
| | |- |
| | | 2 |
| | | 73.89 |
| | | [[24/23]] |
| | | |
| | |- |
| | | 3 |
| | | 110.835 |
| | | [[16/15]] |
| | | |
| | |- |
| | | 4 |
| | | 147.78 |
| | | [[12/11]] |
| | | |
| | |- |
| | | 5 |
| | | 184.725 |
| | | [[10/9]] |
| | | |
| | |- |
| | | 6 |
| | | 221.67 |
| | | [[25/22]] |
| | | |
| | |- |
| | | 7 |
| | | 258.615 |
| | | 36/31 |
| | | |
| | |- |
| | | 8 |
| | | 295.56 |
| | | [[19/16]] |
| | | |
| | |- |
| | | 9 |
| | | 332.505 |
| | | 63/52, 40/33 |
| | | |
| | |- |
| | | 10 |
| | | 369.45 |
| | | [[26/21]] |
| | | |
| | |- |
| | | 11 |
| | | 406.395 |
| | | [[24/19]], [[19/15]] |
| | | |
| | |- |
| | | 12 |
| | | 443.34 |
| | | 31/24 |
| | | |
| | |- |
| | | 13 |
| | | 480.285 |
| | | 33/25 |
| | | |
| | |- |
| | | 14 |
| | | 517.23 |
| | | [[27/20]] |
| | | |
| | |- |
| | | 15 |
| | | 554.175 |
| | | [[11/8]] |
| | | |
| | |- |
| | | 16 |
| | | 591.12 |
| | | [[45/32]] |
| | | |
| | |- |
| | | 17 |
| | | 628.065 |
| | | [[23/16]] |
| | | |
| | |- |
| | | 18 |
| | | 665.01 |
| | | [[22/15]] |
| | | |
| | |- |
| | | 19 |
| | | 701.955 |
| | | '''exact [[3/2]]''' |
| | | just perfect fifth |
| | |- |
| | | 20 |
| | | 738.9 |
| | | |
| | | |
| | |- |
| | | 21 |
| | | 775.845 |
| | | |
| | | |
| | |- |
| | | 22 |
| | | 812.79 |
| | | [[8/5]] |
| | | |
| | |- |
| | | 23 |
| | | 849.735 |
| | | [[18/11]] |
| | | |
| | |- |
| | | 24 |
| | | 886.68 |
| | | [[5/3]] |
| | | |
| | |- |
| | | 25 |
| | | 923.625 |
| | | |
| | | |
| | |- |
| | | 26 |
| | | 960.57 |
| | | |
| | | |
| | |- |
| | | 27 |
| | | 997.515 |
| | | [[16/9]] |
| | | |
| | |- |
| | | 28 |
| | | 1034.46 |
| | | [[20/11]] |
| | | |
| | |- |
| | | 29 |
| | | 1071.405 |
| | | [[13/7]] |
| | | |
| | |- |
| | | 30 |
| | | 1108.35 |
| | | [[36/19]] |
| | | |
| | |- |
| | | 31 |
| | | 1145.295 |
| | | 31/16 |
| | | |
| | |- |
| | | 32 |
| | | 1182.24 |
| | | |
| | | |
| | |- |
| | | 33 |
| | | 1219.185 |
| | | |
| | | |
| | |- |
| | | 34 |
| | | 1256.13 |
| | | |
| | | |
| | |- |
| | | 35 |
| | | 1293.075 |
| | | |
| | | |
| | |- |
| | | 36 |
| | | 1330.02 |
| | | |
| | | |
| | |- |
| | | 37 |
| | | 1366.965 |
| | | |
| | | |
| | |- |
| | | 38 |
| | | 1403.91 |
| | | '''exact''' 9/4 |
| | | |
| | |} |
| | |
| | {{todo|expand}} |
Prime factorization
|
19 (prime)
|
Step size
|
36.945 ¢
|
Octave
|
32\19edf (1182.24 ¢)
|
Twelfth
|
51\19edf (1884.2 ¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
Theory
19edf corresponds to 32.4807 edo (similar to every second step of 65edo). It tempers out the same commas as 65edo with the addition of [-103/19 65/19⟩ (1.425 ¢) resulting from its inexact 4/1. It is not as similar to 32edo as 13edf and 16edf are to 22edo and 27edo.
Harmonics
Approximation of harmonics in 19edf
Harmonic
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
Error
|
Absolute (¢)
|
-17.8
|
-17.8
|
+1.4
|
-15.4
|
+1.4
|
-6.8
|
-16.3
|
+1.4
|
+3.7
|
-13.5
|
-16.3
|
Relative (%)
|
-48.1
|
-48.1
|
+3.9
|
-41.8
|
+3.9
|
-18.5
|
-44.2
|
+3.9
|
+10.1
|
-36.5
|
-44.2
|
Steps (reduced)
|
32 (13)
|
51 (13)
|
65 (8)
|
75 (18)
|
84 (8)
|
91 (15)
|
97 (2)
|
103 (8)
|
108 (13)
|
112 (17)
|
116 (2)
|
Approximation of harmonics in 19edf
Harmonic
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
21
|
22
|
23
|
Error
|
Absolute (¢)
|
-7.1
|
+12.4
|
+3.7
|
+2.9
|
+8.7
|
-16.3
|
+0.9
|
-14.0
|
+12.4
|
+5.7
|
+2.6
|
Relative (%)
|
-19.3
|
+33.4
|
+10.1
|
+7.7
|
+23.6
|
-44.2
|
+2.4
|
-37.9
|
+33.4
|
+15.4
|
+7.1
|
Steps (reduced)
|
120 (6)
|
124 (10)
|
127 (13)
|
130 (16)
|
133 (0)
|
135 (2)
|
138 (5)
|
140 (7)
|
143 (10)
|
145 (12)
|
147 (14)
|
Intervals
Intervals of 19edf
Degree
|
Cents
|
Corresponding JI intervals
|
comments
|
0
|
exact 1/1
|
|
1
|
36.945
|
|
|
2
|
73.89
|
24/23
|
|
3
|
110.835
|
16/15
|
|
4
|
147.78
|
12/11
|
|
5
|
184.725
|
10/9
|
|
6
|
221.67
|
25/22
|
|
7
|
258.615
|
36/31
|
|
8
|
295.56
|
19/16
|
|
9
|
332.505
|
63/52, 40/33
|
|
10
|
369.45
|
26/21
|
|
11
|
406.395
|
24/19, 19/15
|
|
12
|
443.34
|
31/24
|
|
13
|
480.285
|
33/25
|
|
14
|
517.23
|
27/20
|
|
15
|
554.175
|
11/8
|
|
16
|
591.12
|
45/32
|
|
17
|
628.065
|
23/16
|
|
18
|
665.01
|
22/15
|
|
19
|
701.955
|
exact 3/2
|
just perfect fifth
|
20
|
738.9
|
|
|
21
|
775.845
|
|
|
22
|
812.79
|
8/5
|
|
23
|
849.735
|
18/11
|
|
24
|
886.68
|
5/3
|
|
25
|
923.625
|
|
|
26
|
960.57
|
|
|
27
|
997.515
|
16/9
|
|
28
|
1034.46
|
20/11
|
|
29
|
1071.405
|
13/7
|
|
30
|
1108.35
|
36/19
|
|
31
|
1145.295
|
31/16
|
|
32
|
1182.24
|
|
|
33
|
1219.185
|
|
|
34
|
1256.13
|
|
|
35
|
1293.075
|
|
|
36
|
1330.02
|
|
|
37
|
1366.965
|
|
|
38
|
1403.91
|
exact 9/4
|
|