19edf: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>FREEZE No edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
== | == Theory == | ||
19edf corresponds to 32.4807 [[edo]] (similar to every second step of [[65edo]]). It tempers out the same commas as 65edo with the addition of {{monzo| -103/19 65/19 }} (1.425{{c}}) resulting from its inexact 4/1. It is not as similar to [[32edo]] as [[13edf]] and [[16edf]] are to [[22edo]] and [[27edo]]. | |||
{| class="wikitable" | == Harmonics == | ||
{{Harmonics in equal|19|3|2}} | |||
{{Harmonics in equal|19|3|2|start=12|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ style="font-size: 105%;" | Intervals of 19edf | |||
|- | |- | ||
! Degree | |||
! [[Cent]]s | |||
! Corresponding<br />JI intervals | |||
! comments | |||
|- | |- | ||
| | | ! colspan="2" | 0 | ||
| | | '''exact [[1/1]]''' | ||
| | |||
|- | |- | ||
| | | | 1 | ||
| | | | 36.945 | ||
| | |||
| | |||
|- | |- | ||
| | | | 2 | ||
| | | | 73.89 | ||
| [[24/23]] | |||
| | |||
|- | |- | ||
| | | | 3 | ||
| | | | 110.835 | ||
| [[16/15]] | |||
| | |||
|- | |- | ||
| | | | 4 | ||
| | | | 147.78 | ||
| [[12/11]] | |||
| | |||
|- | |- | ||
| | | | 5 | ||
| | | | 184.725 | ||
| [[10/9]] | |||
| | |||
|- | |- | ||
| | | | 6 | ||
| | | | 221.67 | ||
| [[25/22]] | |||
| | |||
|- | |- | ||
| | | | 7 | ||
| | | | 258.615 | ||
| 36/31 | |||
| | |||
|- | |- | ||
| | | | 8 | ||
| | | | 295.56 | ||
| [[19/16]] | |||
| | |||
|- | |- | ||
| | | | 9 | ||
| | | | 332.505 | ||
| 63/52, 40/33 | |||
| | |||
|- | |- | ||
| | | | 10 | ||
| | | | 369.45 | ||
| [[26/21]] | |||
| | |||
|- | |- | ||
| | | | 11 | ||
| | | | 406.395 | ||
| [[24/19]], [[19/15]] | |||
| | |||
|- | |- | ||
| | | | 12 | ||
| | | | 443.34 | ||
| 31/24 | |||
| | |||
|- | |- | ||
| | | | 13 | ||
| | | | 480.285 | ||
| 33/25 | |||
| | |||
|- | |- | ||
| | | | 14 | ||
| | | | 517.23 | ||
| [[27/20]] | |||
| | |||
|- | |- | ||
| | | | 15 | ||
| | | | 554.175 | ||
| [[11/8]] | |||
| | |||
|- | |- | ||
| | | | 16 | ||
| | | | 591.12 | ||
| [[45/32]] | |||
| | |||
|- | |- | ||
| | | | 17 | ||
| | | | 628.065 | ||
| [[23/16]] | |||
| | |||
|- | |- | ||
| | | | 18 | ||
| | | | 665.01 | ||
| [[22/15]] | |||
| | |||
|- | |- | ||
| | | | 19 | ||
| | | | 701.955 | ||
| '''exact [[3/2]]''' | |||
| just perfect fifth | |||
|- | |- | ||
| | | | 20 | ||
| | | | 738.9 | ||
| | |||
| | |||
|- | |- | ||
| | | | 21 | ||
| | | | 775.845 | ||
| | |||
| | |||
|- | |- | ||
| | | | 22 | ||
| | | | 812.79 | ||
| [[8/5]] | |||
| | |||
|- | |- | ||
| | | | 23 | ||
| | | | 849.735 | ||
| [[18/11]] | |||
| | |||
|- | |- | ||
| | | | 24 | ||
| | | | 886.68 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| | | | 25 | ||
| | | | 923.625 | ||
| | |||
| | |||
|- | |- | ||
| | | | 26 | ||
| | | | 960.57 | ||
| | |||
| | |||
|- | |- | ||
| | | | 27 | ||
| | | | 997.515 | ||
| [[16/9]] | |||
| | |||
|- | |- | ||
| | | | 28 | ||
| | | | 1034.46 | ||
| [[20/11]] | |||
| | |||
|- | |- | ||
| | | | 29 | ||
| | | | 1071.405 | ||
| [[13/7]] | |||
| | |||
|- | |- | ||
| | | | 30 | ||
| | | | 1108.35 | ||
| [[36/19]] | |||
| | |||
|- | |- | ||
| | 33 | | 31 | ||
| 1145.295 | |||
| 31/16 | |||
| | |||
|- | |||
| 32 | |||
| 1182.24 | |||
| | |||
| | |||
|- | |||
| 33 | |||
| 1219.185 | |||
| | |||
| | |||
|- | |||
| 34 | |||
| 1256.13 | |||
| | |||
| | |||
|- | |||
| 35 | |||
| 1293.075 | |||
| | |||
| | |||
|- | |||
| 36 | |||
| 1330.02 | |||
| | |||
| | |||
|- | |||
| 37 | |||
| 1366.965 | |||
| | |||
| | |||
|- | |||
| 38 | |||
| 1403.91 | |||
| '''exact''' 9/4 | |||
| | |||
|} | |} | ||
{{todo|expand}} |
Latest revision as of 14:52, 8 July 2025
← 18edf | 19edf | 20edf → |
Theory
19edf corresponds to 32.4807 edo (similar to every second step of 65edo). It tempers out the same commas as 65edo with the addition of [-103/19 65/19⟩ (1.425 ¢) resulting from its inexact 4/1. It is not as similar to 32edo as 13edf and 16edf are to 22edo and 27edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -17.8 | -17.8 | +1.4 | -15.4 | +1.4 | -6.8 | -16.3 | +1.4 | +3.7 | -13.5 | -16.3 |
Relative (%) | -48.1 | -48.1 | +3.9 | -41.8 | +3.9 | -18.5 | -44.2 | +3.9 | +10.1 | -36.5 | -44.2 | |
Steps (reduced) |
32 (13) |
51 (13) |
65 (8) |
75 (18) |
84 (8) |
91 (15) |
97 (2) |
103 (8) |
108 (13) |
112 (17) |
116 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.1 | +12.4 | +3.7 | +2.9 | +8.7 | -16.3 | +0.9 | -14.0 | +12.4 | +5.7 | +2.6 |
Relative (%) | -19.3 | +33.4 | +10.1 | +7.7 | +23.6 | -44.2 | +2.4 | -37.9 | +33.4 | +15.4 | +7.1 | |
Steps (reduced) |
120 (6) |
124 (10) |
127 (13) |
130 (16) |
133 (0) |
135 (2) |
138 (5) |
140 (7) |
143 (10) |
145 (12) |
147 (14) |
Intervals
Degree | Cents | Corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 36.945 | ||
2 | 73.89 | 24/23 | |
3 | 110.835 | 16/15 | |
4 | 147.78 | 12/11 | |
5 | 184.725 | 10/9 | |
6 | 221.67 | 25/22 | |
7 | 258.615 | 36/31 | |
8 | 295.56 | 19/16 | |
9 | 332.505 | 63/52, 40/33 | |
10 | 369.45 | 26/21 | |
11 | 406.395 | 24/19, 19/15 | |
12 | 443.34 | 31/24 | |
13 | 480.285 | 33/25 | |
14 | 517.23 | 27/20 | |
15 | 554.175 | 11/8 | |
16 | 591.12 | 45/32 | |
17 | 628.065 | 23/16 | |
18 | 665.01 | 22/15 | |
19 | 701.955 | exact 3/2 | just perfect fifth |
20 | 738.9 | ||
21 | 775.845 | ||
22 | 812.79 | 8/5 | |
23 | 849.735 | 18/11 | |
24 | 886.68 | 5/3 | |
25 | 923.625 | ||
26 | 960.57 | ||
27 | 997.515 | 16/9 | |
28 | 1034.46 | 20/11 | |
29 | 1071.405 | 13/7 | |
30 | 1108.35 | 36/19 | |
31 | 1145.295 | 31/16 | |
32 | 1182.24 | ||
33 | 1219.185 | ||
34 | 1256.13 | ||
35 | 1293.075 | ||
36 | 1330.02 | ||
37 | 1366.965 | ||
38 | 1403.91 | exact 9/4 |