34ed7: Difference between revisions
mNo edit summary |
ArrowHead294 (talk | contribs) |
||
(9 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
{| class="wikitable" | == Theory == | ||
34ed7 is related to [[12edo]], but with the 7/1 rather than the 2/1 being just. This compresses the octave by 11.0026{{c}}, a small but significant deviation. It is consistent to the [[integer limit|11-integer-limit]], but not to the 12-integer-limit. In comparison, 12edo is only consistent up to the 10-integer-limit. | |||
=== Harmonics === | |||
{{Harmonics in equal|34|7|1|intervals=integer}} | |||
{{Harmonics in equal|34|7|1|intervals=integer|start=12|columns=12|collapsed=true|title=Approximation of harmonics in 34ed7 (continued)}} | |||
=== Subsets and supersets === | |||
Since 34 factors into 2 × 17, 34ed7 contains [[2ed7]] and [[17ed7]] as subsets. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2" | |||
|+ style="font-size: 105%;" | Intervals of 34ed7 | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | [[1/1]] | ||
|- | |- | ||
| 1 | |||
| 99.1 | |||
| [[21/20]] | |||
|- | |- | ||
| 2 | |||
| 198.2 | |||
| | | [[9/8]] | ||
|- | |- | ||
| 3 | |||
| 297.2 | |||
| [[6/5]] | |||
|- | |- | ||
| 4 | |||
| 396.3 | |||
| [[5/4]] | |||
| | |||
|- | |- | ||
| 5 | |||
| 495.4 | |||
| [[4/3]] | |||
|- | |- | ||
| 6 | |||
| 594.5 | |||
| [[7/5]] | |||
|- | |- | ||
| 7 | |||
| 693.6 | |||
| [[3/2]] | |||
| | |||
|- | |- | ||
| 8 | |||
| 792.7 | |||
| [[8/5]] | |||
|- | |- | ||
| 9 | |||
| 891.7 | |||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 10 | |||
| 990.8 | |||
| | | [[7/4]] | ||
|- | |- | ||
| 11 | |||
| 1089.9 | |||
| [[15/8]] | |||
|- | |- | ||
| 12 | |||
| | | 1189.0 | ||
| | | [[2/1]] | ||
|- | |- | ||
| 13 | |||
| 1288.1 | |||
| [[21/10]] | |||
|- | |- | ||
| 14 | |||
| 1387.2 | |||
| [[9/4]] | |||
|- | |- | ||
| 15 | |||
| 1486.2 | |||
| | | [[7/3]] | ||
|- | |- | ||
| 16 | |||
| 1585.3 | |||
| [[5/2]] | |||
|- | |- | ||
| 17 | |||
| 1684.4 | |||
| | | [[8/3]] | ||
|- | |- | ||
| 18 | |||
| 1783.5 | |||
| [[14/5]] | |||
|- | |- | ||
| 19 | |||
| 1882.6 | |||
| [[3/1]] | |||
| | |||
|- | |- | ||
| 20 | |||
| 1981.7 | |||
| [[22/7]] | |||
|- | |- | ||
| 21 | |||
| 2080.7 | |||
| | | [[10/3]] | ||
|- | |- | ||
| 22 | |||
| 2179.8 | |||
| | | [[7/2]] | ||
|- | |- | ||
| 23 | |||
| 2278.9 | |||
| [[15/4]] | |||
|- | |- | ||
| 24 | |||
| | | 2378.0 | ||
| | | [[4/1]] | ||
|- | |- | ||
| 25 | |||
| 2477.1 | |||
| | | [[21/5]] | ||
|- | |- | ||
| 26 | |||
| 2576.2 | |||
| | | [[9/2]] | ||
|- | |- | ||
| 27 | |||
| 2675.2 | |||
| | | [[14/3]] | ||
|- | |- | ||
| 28 | |||
| 2774.3 | |||
| [[5/1]] | |||
| | |||
|- | |- | ||
| 29 | |||
| 2873.4 | |||
| [[16/3]] | |||
| | |||
|- | |- | ||
| 30 | |||
| 2972.5 | |||
| | | [[28/5]] | ||
|- | |- | ||
| 31 | |||
| 3071.6 | |||
| | | [[6/1]] | ||
|- | |- | ||
| 32 | |||
| 3170.7 | |||
| [[25/4]] | |||
|- | |- | ||
| 33 | |||
| 3269.7 | |||
| | | [[20/3]] | ||
|- | |- | ||
| 34 | |||
| 3368.8 | |||
| | | [[7/1]] | ||
|} | |} | ||
== Regular temperaments == | == Regular temperaments == | ||
{{See also| | {{See also| Quintaleap family }} | ||
34ed7 can also be thought of as a [[generator]] of the 11-limit temperament which tempers out 896/891, 1375/1372, and 4375/4356, which is a [[cluster temperament]] with 12 clusters of notes in an octave ([[quintupole]] temperament). This temperament is supported by [[12edo]], [[109edo]], and [[121edo]] among others. | |||
== See also == | == See also == | ||
* [[12edo | * [[12edo]] – relative edo | ||
* [[ | * [[19edt]] – relative edt | ||
* [[28ed5 | * [[28ed5]] – relative ed5 | ||
* [[31ed6 | * [[31ed6]] – relative ed6 | ||
* [[40ed10 | * [[40ed10]] – relative ed10 | ||
* [[42ed11 | * [[42ed11]] – relative ed11 | ||
* [[ | * [[76ed80]] – close to the zeta-optimized tuning for 12edo | ||
* [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] | |||
[[Category: | [[Category:12edo]] | ||
Latest revision as of 13:27, 10 June 2025
← 33ed7 | 34ed7 | 35ed7 → |
34 equal divisions of the 7th harmonic (abbreviated 34ed7) is a nonoctave tuning system that divides the interval of 7/1 into 34 equal parts of about 99.1 ¢ each. Each step represents a frequency ratio of 71/34, or the 34th root of 7.
Theory
34ed7 is related to 12edo, but with the 7/1 rather than the 2/1 being just. This compresses the octave by 11.0026 ¢, a small but significant deviation. It is consistent to the 11-integer-limit, but not to the 12-integer-limit. In comparison, 12edo is only consistent up to the 10-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.0 | -19.4 | -22.0 | -12.0 | -30.4 | +0.0 | -33.0 | -38.8 | -23.0 | +10.2 | -41.4 |
Relative (%) | -11.1 | -19.6 | -22.2 | -12.1 | -30.7 | +0.0 | -33.3 | -39.1 | -23.2 | +10.3 | -41.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (0) |
36 (2) |
38 (4) |
40 (6) |
42 (8) |
43 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +18.2 | -11.0 | -31.4 | -44.0 | +49.2 | +49.3 | -44.3 | -34.0 | -19.4 | -0.8 | +21.3 | +46.7 |
Relative (%) | +18.4 | -11.1 | -31.7 | -44.4 | +49.7 | +49.8 | -44.7 | -34.3 | -19.6 | -0.8 | +21.5 | +47.1 | |
Steps (reduced) |
45 (11) |
46 (12) |
47 (13) |
48 (14) |
50 (16) |
51 (17) |
51 (17) |
52 (18) |
53 (19) |
54 (20) |
55 (21) |
56 (22) |
Subsets and supersets
Since 34 factors into 2 × 17, 34ed7 contains 2ed7 and 17ed7 as subsets.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 99.1 | 21/20 |
2 | 198.2 | 9/8 |
3 | 297.2 | 6/5 |
4 | 396.3 | 5/4 |
5 | 495.4 | 4/3 |
6 | 594.5 | 7/5 |
7 | 693.6 | 3/2 |
8 | 792.7 | 8/5 |
9 | 891.7 | 5/3 |
10 | 990.8 | 7/4 |
11 | 1089.9 | 15/8 |
12 | 1189.0 | 2/1 |
13 | 1288.1 | 21/10 |
14 | 1387.2 | 9/4 |
15 | 1486.2 | 7/3 |
16 | 1585.3 | 5/2 |
17 | 1684.4 | 8/3 |
18 | 1783.5 | 14/5 |
19 | 1882.6 | 3/1 |
20 | 1981.7 | 22/7 |
21 | 2080.7 | 10/3 |
22 | 2179.8 | 7/2 |
23 | 2278.9 | 15/4 |
24 | 2378.0 | 4/1 |
25 | 2477.1 | 21/5 |
26 | 2576.2 | 9/2 |
27 | 2675.2 | 14/3 |
28 | 2774.3 | 5/1 |
29 | 2873.4 | 16/3 |
30 | 2972.5 | 28/5 |
31 | 3071.6 | 6/1 |
32 | 3170.7 | 25/4 |
33 | 3269.7 | 20/3 |
34 | 3368.8 | 7/1 |
Regular temperaments
34ed7 can also be thought of as a generator of the 11-limit temperament which tempers out 896/891, 1375/1372, and 4375/4356, which is a cluster temperament with 12 clusters of notes in an octave (quintupole temperament). This temperament is supported by 12edo, 109edo, and 121edo among others.