277edo: Difference between revisions
linking by temperament name |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" |
||
(16 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
277edo is a good [[5-limit]] tuning; however, it is in[[consistent]] in the [[7-odd-limit]]. As an equal temperament, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) and {{monzo| -11 -37 30 }} in the 5-limit. | |||
[[ | The [[patent val]] {{val| 277 439 643 778 }} tempers out [[4375/4374]], [[65625/65536]], and 829440/823543 in the 7-limit; [[540/539]], [[6250/6237]], 15488/15435, and 35937/35840 in the 11-limit; [[625/624]], [[729/728]], [[1573/1568]], [[2080/2079]], and [[2200/2197]] in the 13-limit. It [[support]]s [[pontiac]]. | ||
[[ | |||
The 277d val {{val| 277 439 643 '''777''' }} tempers out [[1029/1024]], [[10976/10935]], and 48828125/48771072 in the 7-limit; [[385/384]], [[441/440]], [[19712/19683]], and 234375/234256 in the 11-limit; 625/624, [[847/845]], [[1001/1000]], and [[1575/1573]] in the 13-limit. It supports [[guiron]] and [[widefourth]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|277}} | |||
=== Subsets and supersets === | |||
277edo is the 59th [[prime edo]]. | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br />8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -439 277 }} | |||
| {{mapping| 277 439 }} | |||
| +0.0473 | |||
| 0.0473 | |||
| 1.09 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| -11 -37 30 }} | |||
| {{mapping| 277 439 643 }} | |||
| +0.1398 | |||
| 0.1364 | |||
| 3.15 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br />per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br />ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 115\277 | |||
| 498.19 | |||
| 4/3 | |||
| [[Helmholtz (temperament)|Helmholtz]] | |||
|} | |||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Francium]] | |||
* "Rizzardry" from ''The Scallop Disco Accident'' (2025) – [https://open.spotify.com/track/1NqjyKORN0c2AIOhTMMUK7 Spotify] | [https://francium223.bandcamp.com/track/rizzardry Bandcamp] | [https://www.youtube.com/watch?v=HZ67knYwALA YouTube] – in Zangaric, 277edo tuning | |||
* "It's a Smell." from ''Random Sentences'' (2025) – [https://open.spotify.com/track/35sVZfy1mDsPHZwjgh8Sql Spotify] | [https://francium223.bandcamp.com/track/its-a-smell Bandcamp] | [https://www.youtube.com/watch?v=L9Tn7n-THCM YouTube] – in Yerkesic, 277edo tuning |
Latest revision as of 02:30, 17 April 2025
← 276edo | 277edo | 278edo → |
277 equal divisions of the octave (abbreviated 277edo or 277ed2), also called 277-tone equal temperament (277tet) or 277 equal temperament (277et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 277 equal parts of about 4.33 ¢ each. Each step represents a frequency ratio of 21/277, or the 277th root of 2.
Theory
277edo is a good 5-limit tuning; however, it is inconsistent in the 7-odd-limit. As an equal temperament, it tempers out 32805/32768 (schisma) and [-11 -37 30⟩ in the 5-limit.
The patent val ⟨277 439 643 778] tempers out 4375/4374, 65625/65536, and 829440/823543 in the 7-limit; 540/539, 6250/6237, 15488/15435, and 35937/35840 in the 11-limit; 625/624, 729/728, 1573/1568, 2080/2079, and 2200/2197 in the 13-limit. It supports pontiac.
The 277d val ⟨277 439 643 777] tempers out 1029/1024, 10976/10935, and 48828125/48771072 in the 7-limit; 385/384, 441/440, 19712/19683, and 234375/234256 in the 11-limit; 625/624, 847/845, 1001/1000, and 1575/1573 in the 13-limit. It supports guiron and widefourth.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.15 | -0.75 | +1.57 | -1.14 | -0.09 | -0.98 | +1.40 | -0.12 | +1.47 | -1.35 |
Relative (%) | +0.0 | -3.5 | -17.4 | +36.3 | -26.3 | -2.2 | -22.7 | +32.4 | -2.7 | +33.9 | -31.2 | |
Steps (reduced) |
277 (0) |
439 (162) |
643 (89) |
778 (224) |
958 (127) |
1025 (194) |
1132 (24) |
1177 (69) |
1253 (145) |
1346 (238) |
1372 (264) |
Subsets and supersets
277edo is the 59th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-439 277⟩ | [⟨277 439]] | +0.0473 | 0.0473 | 1.09 |
2.3.5 | 32805/32768, [-11 -37 30⟩ | [⟨277 439 643]] | +0.1398 | 0.1364 | 3.15 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 115\277 | 498.19 | 4/3 | Helmholtz |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct