241edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+RTT table and rank-2 temperaments
ArrowHead294 (talk | contribs)
mNo edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
'''241edo''' is the [[EDO|equal division of the octave]] into 241 parts of 4.9793 [[cent]]s each. It tempers out 78732/78125 in the 5-limit, 19683/19600 and 3136/3125 in the 7-limit, 65536/65219, 540/539, 43923/43904, and 151263/151250 in the 11-limit, and 351/350, 676/675, 729/728, 1001/1000 and 2080/2079 in the 13-limit. It provides the [[optimal patent val]] for [[subpental]].
{{Infobox ET}}
{{ED intro}}


241edo is the 53rd [[prime edo]].
== Theory ==
241edo is [[consistency|distinctly consistent]] in the [[15-odd-limit]]. It has a sharp tendency, with [[prime harmonic]]s 3 through 13 all tuned sharp. As an equal temperament, it [[tempering out|tempers out]] [[78732/78125]] in the [[5-limit]], [[19683/19600]] and [[3136/3125]] in the [[7-limit]], [[540/539]], 43923/43904, [[65536/65219]], and [[151263/151250]] in the [[11-limit]], and [[351/350]], [[676/675]], [[729/728]], [[1001/1000]] and [[2080/2079]] in the [[13-limit]]. It provides the [[optimal patent val]] for [[subpental]].


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|241}}
{{Harmonics in equal|241}}
=== Subsets and supersets ===
241edo is the 53rd [[prime edo]].


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 19: Line 25:
| 2.3
| 2.3
| {{monzo| 382 -241 }}
| {{monzo| 382 -241 }}
| [{{val| 241 382 }}]
| {{mapping| 241 382 }}
| -0.038
| −0.038
| 0.038
| 0.038
| 0.76
| 0.76
Line 26: Line 32:
| 2.3.5
| 2.3.5
| 78732/78125, {{monzo| 56 -28 -5 }}
| 78732/78125, {{monzo| 56 -28 -5 }}
| [{{val| 241 382 560 }}]
| {{mapping| 241 382 560 }}
| -0.322
| −0.322
| 0.403
| 0.403
| 8.10
| 8.10
Line 33: Line 39:
| 2.3.5.7
| 2.3.5.7
| 3136/3125, 19683/19600, 829940/823543
| 3136/3125, 19683/19600, 829940/823543
| [{{val| 241 382 560 677 }}]
| {{mapping| 241 382 560 677 }}
| -0.431
| −0.431
| 0.397
| 0.397
| 7.97
| 7.97
Line 40: Line 46:
| 2.3.5.7.11
| 2.3.5.7.11
| 540/539, 3136/3125, 8019/8000, 15488/15435
| 540/539, 3136/3125, 8019/8000, 15488/15435
| [{{val| 241 382 560 677 834 }}]
| {{mapping| 241 382 560 677 834 }}
| -0.425
| −0.425
| 0.355
| 0.355
| 7.14
| 7.14
Line 47: Line 53:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 351/350, 540/539, 676/675, 3136/3125, 10648/10647
| 351/350, 540/539, 676/675, 3136/3125, 10648/10647
| [{{val| 241 382 560 677 834 892 }}]
| {{mapping| 241 382 560 677 834 892 }}
| -0.397
| −0.397
| 0.330
| 0.330
| 6.63
| 6.63
Line 55: Line 61:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 92: Line 99:
| [[Gary]]
| [[Gary]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave]]
[[Category:Prime EDO]]
[[Category:Subpental]]
[[Category:Subpental]]

Latest revision as of 14:23, 20 February 2025

← 240edo 241edo 242edo →
Prime factorization 241 (prime)
Step size 4.97925 ¢ 
Fifth 141\241 (702.075 ¢)
Semitones (A1:m2) 23:18 (114.5 ¢ : 89.63 ¢)
Consistency limit 15
Distinct consistency limit 15

241 equal divisions of the octave (abbreviated 241edo or 241ed2), also called 241-tone equal temperament (241tet) or 241 equal temperament (241et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 241 equal parts of about 4.98 ¢ each. Each step represents a frequency ratio of 21/241, or the 241st root of 2.

Theory

241edo is distinctly consistent in the 15-odd-limit. It has a sharp tendency, with prime harmonics 3 through 13 all tuned sharp. As an equal temperament, it tempers out 78732/78125 in the 5-limit, 19683/19600 and 3136/3125 in the 7-limit, 540/539, 43923/43904, 65536/65219, and 151263/151250 in the 11-limit, and 351/350, 676/675, 729/728, 1001/1000 and 2080/2079 in the 13-limit. It provides the optimal patent val for subpental.

Prime harmonics

Approximation of prime harmonics in 241edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.12 +2.07 +2.13 +1.38 +0.97 -0.39 +1.24 -0.89 +1.13 +0.19
Relative (%) +0.0 +2.4 +41.5 +42.7 +27.7 +19.4 -7.9 +24.9 -17.8 +22.7 +3.9
Steps
(reduced)
241
(0)
382
(141)
560
(78)
677
(195)
834
(111)
892
(169)
985
(21)
1024
(60)
1090
(126)
1171
(207)
1194
(230)

Subsets and supersets

241edo is the 53rd prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [382 -241 [241 382]] −0.038 0.038 0.76
2.3.5 78732/78125, [56 -28 -5 [241 382 560]] −0.322 0.403 8.10
2.3.5.7 3136/3125, 19683/19600, 829940/823543 [241 382 560 677]] −0.431 0.397 7.97
2.3.5.7.11 540/539, 3136/3125, 8019/8000, 15488/15435 [241 382 560 677 834]] −0.425 0.355 7.14
2.3.5.7.11.13 351/350, 540/539, 676/675, 3136/3125, 10648/10647 [241 382 560 677 834 892]] −0.397 0.330 6.63

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 20\241 99.59 200/189 Quintagar / quinsandric
1 50\241 248.96 [-26 18 -1 Monzismic
1 76\241 378.42 56/45 Subpental
1 89\241 443.15 162/125 Sensipent
1 100\241 497.93 4/3 Gary

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct