57edf: Difference between revisions
Created page with "'''57EDF''' is the equal division of the just perfect fifth into 57 parts of 12.3150 cents each, corresponding to 97.4421 edo. It is related to the regula..." Tags: Mobile edit Mobile web edit |
m →Theory: cleanup |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
==Related regular temperaments== | == Theory == | ||
===2.3.7 subgroup 877&5067=== | 57edf corresponds to 97.4421[[edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| -32 33 0 -6 -1 }} and {{monzo| 76 -8 0 -9 -11 }} in the [[11-limit]], which is supported by {{EDOs| 877-, 3313-, 4190-, 5067-, 5944-, 6821-, 7698-, and 11011edo }}. | ||
Commas: |-428 371 0 -57 | |||
=== Harmonics === | |||
{{Harmonics in equal|57|3|2}} | |||
{{Harmonics in equal|57|3|2|start=12|collapsed=true|title=Approximation of harmonics in 57edf (continued)}} | |||
== Related regular temperaments == | |||
=== 2.3.7 subgroup 877&5067 === | |||
Commas: {{monzo| -428 371 0 -57 }} | |||
POTE generator: ~1605632/1594323 = 12.3149 | POTE generator: ~1605632/1594323 = 12.3149 | ||
Mapping: [{{val| 1 1 -1 }}, {{val| 0 57 371 }}] | |||
EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575 | EDOs: {{EDOs|877, 4190, 5067, 5944, 6821, 7698, 8575}} | ||
===2.3.7.11 subgroup 877&5067=== | === 2.3.7.11 subgroup 877&5067 === | ||
Commas: |-32 33 0 -6 -1 | Commas: {{monzo| -32 33 0 -6 -1 }}, {{monzo| 76 -8 0 -9 -11 }} | ||
POTE generator: ~1605632/1594323 = 12.3150 | POTE generator: ~1605632/1594323 = 12.3150 | ||
Mapping: [{{val| 1 1 -1 7 }}, {{val| 0 57 371 -345 }}] | |||
EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011 | EDOs: {{EDOs|877, 3313, 4190, 5067, 5944, 6821, 7698, 11011}} | ||
===2.3.7.11.13 subgroup 877&5067=== | === 2.3.7.11.13 subgroup 877&5067 === | ||
Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663 | Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663 | ||
POTE generator: ~1605632/1594323 = 12.3150 | POTE generator: ~1605632/1594323 = 12.3150 | ||
Mapping: [{{val| 1 1 -1 7 -10 }}, {{val| 0 57 371 -345 1335 }}] | |||
EDOs: {{EDOs|877, 3313, 4190, 5067, 5944, 9257}} | |||
== Intervals == | |||
{{Interval table}} | |||
{{Todo|cleanup}} | |||
Latest revision as of 17:24, 17 January 2025
← 56edf | 57edf | 58edf → |
57 equal divisions of the perfect fifth (abbreviated 57edf or 57ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 57 equal parts of about 12.3 ¢ each. Each step represents a frequency ratio of (3/2)1/57, or the 57th root of 3/2.
Theory
57edf corresponds to 97.4421edo. It is related to the regular temperament which tempers out [-32 33 0 -6 -1⟩ and [76 -8 0 -9 -11⟩ in the 11-limit, which is supported by 877-, 3313-, 4190-, 5067-, 5944-, 6821-, 7698-, and 11011edo.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.44 | -5.44 | +1.43 | -3.12 | +1.43 | +5.48 | -4.02 | +1.43 | +3.75 | -1.16 | -4.02 |
Relative (%) | -44.2 | -44.2 | +11.6 | -25.4 | +11.6 | +44.5 | -32.6 | +11.6 | +30.4 | -9.4 | -32.6 | |
Steps (reduced) |
97 (40) |
154 (40) |
195 (24) |
226 (55) |
252 (24) |
274 (46) |
292 (7) |
309 (24) |
324 (39) |
337 (52) |
349 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.19 | +0.04 | +3.75 | +2.85 | -3.59 | -4.02 | +0.90 | -1.70 | +0.04 | +5.71 | +2.64 |
Relative (%) | +42.1 | +0.3 | +30.4 | +23.1 | -29.1 | -32.6 | +7.3 | -13.8 | +0.3 | +46.3 | +21.4 | |
Steps (reduced) |
361 (19) |
371 (29) |
381 (39) |
390 (48) |
398 (56) |
406 (7) |
414 (15) |
421 (22) |
428 (29) |
435 (36) |
441 (42) |
Related regular temperaments
2.3.7 subgroup 877&5067
Commas: [-428 371 0 -57⟩
POTE generator: ~1605632/1594323 = 12.3149
Mapping: [⟨1 1 -1], ⟨0 57 371]]
EDOs: 877, 4190, 5067, 5944, 6821, 7698, 8575
2.3.7.11 subgroup 877&5067
Commas: [-32 33 0 -6 -1⟩, [76 -8 0 -9 -11⟩
POTE generator: ~1605632/1594323 = 12.3150
Mapping: [⟨1 1 -1 7], ⟨0 57 371 -345]]
EDOs: 877, 3313, 4190, 5067, 5944, 6821, 7698, 11011
2.3.7.11.13 subgroup 877&5067
Commas: 257330216/257298363, 53722307808/53710650917, 1786706395136/1786568061663
POTE generator: ~1605632/1594323 = 12.3150
Mapping: [⟨1 1 -1 7 -10], ⟨0 57 371 -345 1335]]
EDOs: 877, 3313, 4190, 5067, 5944, 9257
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 12.3 | |
2 | 24.6 | |
3 | 36.9 | |
4 | 49.3 | 34/33 |
5 | 61.6 | 29/28 |
6 | 73.9 | |
7 | 86.2 | |
8 | 98.5 | |
9 | 110.8 | |
10 | 123.2 | |
11 | 135.5 | |
12 | 147.8 | |
13 | 160.1 | 23/21 |
14 | 172.4 | 21/19 |
15 | 184.7 | 10/9, 29/26 |
16 | 197 | 19/17, 28/25 |
17 | 209.4 | 26/23 |
18 | 221.7 | 25/22, 33/29 |
19 | 234 | |
20 | 246.3 | |
21 | 258.6 | 29/25 |
22 | 270.9 | 34/29 |
23 | 283.2 | 33/28 |
24 | 295.6 | |
25 | 307.9 | 31/26 |
26 | 320.2 | |
27 | 332.5 | 17/14, 23/19 |
28 | 344.8 | |
29 | 357.1 | |
30 | 369.5 | 21/17, 26/21 |
31 | 381.8 | |
32 | 394.1 | |
33 | 406.4 | |
34 | 418.7 | 14/11 |
35 | 431 | |
36 | 443.3 | 22/17 |
37 | 455.7 | |
38 | 468 | |
39 | 480.3 | 29/22, 33/25 |
40 | 492.6 | |
41 | 504.9 | |
42 | 517.2 | 27/20, 31/23 |
43 | 529.5 | 19/14, 34/25 |
44 | 541.9 | 26/19 |
45 | 554.2 | 29/21 |
46 | 566.5 | |
47 | 578.8 | |
48 | 591.1 | |
49 | 603.4 | |
50 | 615.8 | |
51 | 628.1 | |
52 | 640.4 | |
53 | 652.7 | 19/13 |
54 | 665 | 22/15, 25/17 |
55 | 677.3 | 31/21 |
56 | 689.6 | |
57 | 702 | 3/2 |