44edf: Difference between revisions
Created page with "'''44EDF''' is the equal division of the just perfect fifth into 44 parts of 15.9535 cents each, corresponding to 75.2185 edo. It is related to the regula..." Tags: Mobile edit Mobile web edit |
m →Theory: cleanup |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Todo|cleanup|add examples|text=add examples of how music can be made with this tuning, stuff like instruments tuned to it, 4 to 12 note scales within it, etc.}} | |||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
44edf corresponds to 75.2185[[edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| 183 -51 -44 }} in the [[5-limit]], which is supported by {{EDOs| 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo }}. | |||
=== Harmonics === | |||
{{Harmonics in equal|44|3|2|intervals=prime}} | |||
== Related regular temperaments == | |||
===5-limit 677&1053=== | |||
Comma: |183 -51 -44> | |||
POTE generator: ~|-104 29 25> = 15.9540 | |||
Mapping: [<1 1 3|, <0 44 -51|] | |||
EDOs: {{EDOs|75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836}} | |||
===2.3.5.11 677&1053=== | |||
Commas: 184549376/184528125, 38084983750656/38060880859375 | |||
POTE generator: ~|-104 29 25> = 15.9535 | |||
Mapping: [<1 1 3 1|, <0 44 -51 185|] | |||
EDOs: {{EDOs|301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084}} | |||
===13-limit 677&1053=== | |||
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000 | |||
POTE generator: ~|-104 29 25> = 15.9540 | |||
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|] | |||
EDOs: {{EDOs|677, 1053, 1730, 2407, 3084, 4137}} | |||
==Intervals== | ==Intervals== | ||
Line 9: | Line 45: | ||
! | comments | ! | comments | ||
|- | |- | ||
| | | | colspan="2"| 0 | ||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 20: | Line 55: | ||
|- | |- | ||
| | 2 | | | 2 | ||
| | 31. | | | 31.907 | ||
| | | | | | ||
| | | | | | ||
Line 65: | Line 100: | ||
|- | |- | ||
| | 11 | | | 11 | ||
| | 175. | | | 175.48875 | ||
| | 31/28 | | | 31/28 | ||
| | | | | | ||
Line 111: | Line 146: | ||
| | 20 | | | 20 | ||
| | 319.0705 | | | 319.0705 | ||
| | | | |6/5 | ||
| | | | | | ||
|- | |- | ||
| | 21 | | | 21 | ||
| | 335. | | | 335.024 | ||
| | | | | | ||
| | | | | | ||
Line 125: | Line 160: | ||
|- | |- | ||
| | 23 | | | 23 | ||
| | 366. | | | 366.931 | ||
| | | | | | ||
| | | | | | ||
Line 131: | Line 166: | ||
| | 24 | | | 24 | ||
| | 382.8845 | | | 382.8845 | ||
| | | | |5/4 | ||
| | | | | | ||
|- | |- | ||
Line 141: | Line 176: | ||
| | 26 | | | 26 | ||
| | 414.7916 | | | 414.7916 | ||
| | | | |14/11 | ||
| | | | | | ||
|- | |- | ||
| | 27 | | | 27 | ||
| | 430.7451 | | | 430.7451 | ||
| | | | |9/7 | ||
| | | | | | ||
|- | |- | ||
Line 166: | Line 201: | ||
| | 31 | | | 31 | ||
| | 494.5592 | | | 494.5592 | ||
| | | | |4/3 | ||
| | | | | | ||
|- | |- | ||
Line 175: | Line 210: | ||
|- | |- | ||
| | 33 | | | 33 | ||
| | 526. | | | 526.46625 | ||
| | 42/31 | | | 42/31, 27/20 | ||
| | | | | | ||
|- | |- | ||
Line 206: | Line 241: | ||
| | 39 | | | 39 | ||
| | 622.1874 | | | 622.1874 | ||
| | | | |63/44 | ||
| | | | | | ||
|- | |- | ||
| | 40 | | | 40 | ||
| | 638.1409 | | | 638.1409 | ||
| | | | |81/56 | ||
| | | | | | ||
|- | |- | ||
Line 220: | Line 255: | ||
|- | |- | ||
| | 42 | | | 42 | ||
| | 670. | | | 670.048 | ||
| | | | | | ||
| | | | | | ||
Line 226: | Line 261: | ||
| | 43 | | | 43 | ||
| | 686.0015 | | | 686.0015 | ||
| | | | |40/27 | ||
| | | | | | ||
|- | |- | ||
| | 44 | | | 44 | ||
| | 701. | | | 701.955 | ||
| | '''exact [[3/2]]''' | | | '''exact [[3/2]]''' | ||
| | just perfect fifth | | | just perfect fifth | ||
|- | |||
|45 | |||
|717.8985 | |||
|243/160 | |||
| | |||
|- | |||
|46 | |||
|733.862 | |||
| | |||
| | |||
|- | |||
|47 | |||
|749.8156 | |||
| | |||
| | |||
|- | |||
|48 | |||
|765.7691 | |||
|14/9 | |||
| | |||
|- | |||
|49 | |||
|781.7226 | |||
|11/7 | |||
| | |||
|- | |||
|50 | |||
|797.6761 | |||
| | |||
| | |||
|- | |||
|51 | |||
|813.6297 | |||
|8/5 | |||
| | |||
|- | |||
|52 | |||
|829.5832 | |||
| | |||
| | |||
|- | |||
|53 | |||
|845.5367 | |||
| | |||
| | |||
|- | |||
|54 | |||
|861.4902 | |||
| | |||
| | |||
|- | |||
|55 | |||
|877.44375 | |||
|5/3 | |||
| | |||
|- | |||
|56 | |||
|893.3973 | |||
| | |||
| | |||
|- | |||
|57 | |||
|909.3508 | |||
|27/16 | |||
| | |||
|- | |||
|58 | |||
|925.3043 | |||
| | |||
| | |||
|- | |||
|59 | |||
|941.2578 | |||
| | |||
| | |||
|- | |||
|60 | |||
|957.2184 | |||
|153/88 | |||
| | |||
|- | |||
|61 | |||
|973.1649 | |||
|7/4 | |||
| | |||
|- | |||
|62 | |||
|989.1184 | |||
|99/56 | |||
| | |||
|- | |||
|63 | |||
|1005.0719 | |||
|243/136 | |||
| | |||
|- | |||
|64 | |||
|1021.0255 | |||
|9/5 | |||
| | |||
|- | |||
|65 | |||
|1036.979 | |||
| | |||
| | |||
|- | |||
|66 | |||
|1052.9325 | |||
| | |||
| | |||
|- | |||
|67 | |||
|1068.886 | |||
|13/7 | |||
| | |||
|- | |||
|68 | |||
|1084.89355 | |||
|15/8 | |||
| | |||
|- | |||
|69 | |||
|1100.7931 | |||
| | |||
| | |||
|- | |||
|70 | |||
|1116.7466 | |||
| | |||
| | |||
|- | |||
|71 | |||
|1132.7001 | |||
| | |||
| | |||
|- | |||
|72 | |||
|1148.6536 | |||
| | |||
| | |||
|- | |||
|73 | |||
|1164.9072 | |||
| | |||
| | |||
|- | |||
|74 | |||
|1180.5607 | |||
|160/81 | |||
| | |||
|- | |||
|75 | |||
|1196.5142 | |||
|2/1 | |||
| | |||
|- | |||
|76 | |||
|1212.4677 | |||
| | |||
| | |||
|- | |||
|77 | |||
|1228.42125 | |||
| | |||
| | |||
|- | |||
|78 | |||
|1244.3748 | |||
| | |||
| | |||
|- | |||
|79 | |||
|1260.3283 | |||
| | |||
| | |||
|- | |||
|80 | |||
|1276.2818 | |||
| | |||
| | |||
|- | |||
|81 | |||
|1292.2353 | |||
| | |||
| | |||
|- | |||
|82 | |||
|1308.1889 | |||
| | |||
| | |||
|- | |||
|83 | |||
|1324.1424 | |||
| | |||
| | |||
|- | |||
|84 | |||
|1340.0959 | |||
| | |||
| | |||
|- | |||
|85 | |||
|1356.0494 | |||
| | |||
| | |||
|- | |||
|86 | |||
|1372.003 | |||
| | |||
| | |||
|- | |||
|87 | |||
|1387.9565 | |||
|20/9 | |||
| | |||
|- | |||
|88 | |||
|1403.91 | |||
|'''exact''' 9/4 | |||
| | |||
|} | |} | ||
Latest revision as of 17:21, 17 January 2025
← 43edf | 44edf | 45edf → |
44 equal divisions of the perfect fifth (abbreviated 44edf or 44ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 44 equal parts of about 16 ¢ each. Each step represents a frequency ratio of (3/2)1/44, or the 44th root of 3/2.
Theory
44edf corresponds to 75.2185edo. It is related to the regular temperament which tempers out [183 -51 -44⟩ in the 5-limit, which is supported by 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.49 | -3.49 | +5.55 | -2.63 | -3.40 | -5.45 | -7.22 | +7.61 | -4.08 | -6.54 | +5.63 |
Relative (%) | -21.8 | -21.8 | +34.8 | -16.5 | -21.3 | -34.2 | -45.3 | +47.7 | -25.6 | -41.0 | +35.3 | |
Steps (reduced) |
75 (31) |
119 (31) |
175 (43) |
211 (35) |
260 (40) |
278 (14) |
307 (43) |
320 (12) |
340 (32) |
365 (13) |
373 (21) |
Related regular temperaments
5-limit 677&1053
Comma: |183 -51 -44>
POTE generator: ~|-104 29 25> = 15.9540
Mapping: [<1 1 3|, <0 44 -51|]
EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836
2.3.5.11 677&1053
Commas: 184549376/184528125, 38084983750656/38060880859375
POTE generator: ~|-104 29 25> = 15.9535
Mapping: [<1 1 3 1|, <0 44 -51 185|]
EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084
13-limit 677&1053
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
POTE generator: ~|-104 29 25> = 15.9540
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]
EDOs: 677, 1053, 1730, 2407, 3084, 4137
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 15.9535 | ||
2 | 31.907 | ||
3 | 47.8606 | ||
4 | 63.8141 | ||
5 | 79.7676 | 22/21 | |
6 | 95.7211 | 37/35 | |
7 | 111.6747 | 16/15 | |
8 | 127.6282 | 14/13 | |
9 | 143.5817 | 25/23 | |
10 | 159.5352 | 34/31 | |
11 | 175.48875 | 31/28 | |
12 | 191.4423 | 19/17 | |
13 | 207.3958 | 62/55 | |
14 | 223.3493 | 33/29 | |
15 | 239.3028 | 31/27 | |
16 | 255.2564 | 51/44 | |
17 | 271.2099 | 62/53 | |
18 | 287.1634 | ||
19 | 303.1169 | 81/68 | |
20 | 319.0705 | 6/5 | |
21 | 335.024 | ||
22 | 350.9775 | 60/49, 49/40 | |
23 | 366.931 | ||
24 | 382.8845 | 5/4 | |
25 | 398.8381 | 34/27 | |
26 | 414.7916 | 14/11 | |
27 | 430.7451 | 9/7 | |
28 | 446.6986 | 22/17 | |
29 | 462.6522 | ||
30 | 478.6057 | ||
31 | 494.5592 | 4/3 | |
32 | 510.5127 | ||
33 | 526.46625 | 42/31, 27/20 | |
34 | 542.4198 | ||
35 | 558.3733 | ||
36 | 574.3268 | ||
37 | 590.2803 | 45/32 | |
38 | 606.2339 | ||
39 | 622.1874 | 63/44 | |
40 | 638.1409 | 81/56 | |
41 | 654.0944 | ||
42 | 670.048 | ||
43 | 686.0015 | 40/27 | |
44 | 701.955 | exact 3/2 | just perfect fifth |
45 | 717.8985 | 243/160 | |
46 | 733.862 | ||
47 | 749.8156 | ||
48 | 765.7691 | 14/9 | |
49 | 781.7226 | 11/7 | |
50 | 797.6761 | ||
51 | 813.6297 | 8/5 | |
52 | 829.5832 | ||
53 | 845.5367 | ||
54 | 861.4902 | ||
55 | 877.44375 | 5/3 | |
56 | 893.3973 | ||
57 | 909.3508 | 27/16 | |
58 | 925.3043 | ||
59 | 941.2578 | ||
60 | 957.2184 | 153/88 | |
61 | 973.1649 | 7/4 | |
62 | 989.1184 | 99/56 | |
63 | 1005.0719 | 243/136 | |
64 | 1021.0255 | 9/5 | |
65 | 1036.979 | ||
66 | 1052.9325 | ||
67 | 1068.886 | 13/7 | |
68 | 1084.89355 | 15/8 | |
69 | 1100.7931 | ||
70 | 1116.7466 | ||
71 | 1132.7001 | ||
72 | 1148.6536 | ||
73 | 1164.9072 | ||
74 | 1180.5607 | 160/81 | |
75 | 1196.5142 | 2/1 | |
76 | 1212.4677 | ||
77 | 1228.42125 | ||
78 | 1244.3748 | ||
79 | 1260.3283 | ||
80 | 1276.2818 | ||
81 | 1292.2353 | ||
82 | 1308.1889 | ||
83 | 1324.1424 | ||
84 | 1340.0959 | ||
85 | 1356.0494 | ||
86 | 1372.003 | ||
87 | 1387.9565 | 20/9 | |
88 | 1403.91 | exact 9/4 |