44edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Created page with "'''44EDF''' is the equal division of the just perfect fifth into 44 parts of 15.9535 cents each, corresponding to 75.2185 edo. It is related to the regula..."
Tags: Mobile edit Mobile web edit
 
m Theory: cleanup
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''44EDF''' is the [[EDF|equal division of the just perfect fifth]] into 44 parts of 15.9535 [[cent|cents]] each, corresponding to 75.2185 [[edo]]. It is related to the regular temperament which tempers out |183 -51 -44> in the 5-limit, which is supported by 301, 376, 677, 1053, 1429, 1730, 2407, and 2783 EDOs.
{{Todo|cleanup|add examples|text=add examples of how music can be made with this tuning, stuff like instruments tuned to it, 4 to 12 note scales within it, etc.}}
{{Infobox ET}}
{{ED intro}}
 
== Theory ==
44edf corresponds to 75.2185[[edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| 183 -51 -44 }} in the [[5-limit]], which is supported by {{EDOs| 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo }}.
 
=== Harmonics ===
{{Harmonics in equal|44|3|2|intervals=prime}}
 
== Related regular temperaments ==
===5-limit 677&1053===
Comma: |183 -51 -44>
 
POTE generator: ~|-104 29 25> = 15.9540
 
Mapping: [<1 1 3|, <0 44 -51|]
 
EDOs: {{EDOs|75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836}}
 
===2.3.5.11 677&1053===
Commas: 184549376/184528125, 38084983750656/38060880859375
 
POTE generator: ~|-104 29 25> = 15.9535
 
Mapping: [<1 1 3 1|, <0 44 -51 185|]
 
EDOs: {{EDOs|301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084}}
 
===13-limit 677&1053===
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
 
POTE generator: ~|-104 29 25> = 15.9540
 
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]
 
EDOs: {{EDOs|677, 1053, 1730, 2407, 3084, 4137}}


==Intervals==
==Intervals==
Line 9: Line 45:
! | comments
! | comments
|-
|-
| | 0
| colspan="2"| 0
| | 0.0000
| | '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
| |  
| |  
Line 20: Line 55:
|-
|-
| | 2
| | 2
| | 31.9070
| | 31.907
| |  
| |  
| |  
| |  
Line 65: Line 100:
|-
|-
| | 11
| | 11
| | 175.4888
| | 175.48875
| | 31/28
| | 31/28
| |  
| |  
Line 111: Line 146:
| | 20
| | 20
| | 319.0705
| | 319.0705
| | 101/84
| |6/5
| |  
| |  
|-
|-
| | 21
| | 21
| | 335.0240
| | 335.024
| |  
| |  
| |  
| |  
Line 125: Line 160:
|-
|-
| | 23
| | 23
| | 366.9310
| | 366.931
| |  
| |  
| |  
| |  
Line 131: Line 166:
| | 24
| | 24
| | 382.8845
| | 382.8845
| | 126/101
| |5/4
| |  
| |  
|-
|-
Line 141: Line 176:
| | 26
| | 26
| | 414.7916
| | 414.7916
| |  
| |14/11
| |  
| |  
|-
|-
| | 27
| | 27
| | 430.7451
| | 430.7451
| |  
| |9/7
| |  
| |  
|-
|-
Line 166: Line 201:
| | 31
| | 31
| | 494.5592
| | 494.5592
| |  
| |4/3
| |  
| |  
|-
|-
Line 175: Line 210:
|-
|-
| | 33
| | 33
| | 526.4663
| | 526.46625
| | 42/31
| | 42/31, 27/20
| |  
| |  
|-
|-
Line 206: Line 241:
| | 39
| | 39
| | 622.1874
| | 622.1874
| |  
| |63/44
| |  
| |  
|-
|-
| | 40
| | 40
| | 638.1409
| | 638.1409
| |  
| |81/56
| |  
| |  
|-
|-
Line 220: Line 255:
|-
|-
| | 42
| | 42
| | 670.0480
| | 670.048
| |  
| |  
| |  
| |  
Line 226: Line 261:
| | 43
| | 43
| | 686.0015
| | 686.0015
| |  
| |40/27
| |  
| |  
|-
|-
| | 44
| | 44
| | 701.9550
| | 701.955
| | '''exact [[3/2]]'''
| | '''exact [[3/2]]'''
| | just perfect fifth
| | just perfect fifth
|-
|45
|717.8985
|243/160
|
|-
|46
|733.862
|
|
|-
|47
|749.8156
|
|
|-
|48
|765.7691
|14/9
|
|-
|49
|781.7226
|11/7
|
|-
|50
|797.6761
|
|
|-
|51
|813.6297
|8/5
|
|-
|52
|829.5832
|
|
|-
|53
|845.5367
|
|
|-
|54
|861.4902
|
|
|-
|55
|877.44375
|5/3
|
|-
|56
|893.3973
|
|
|-
|57
|909.3508
|27/16
|
|-
|58
|925.3043
|
|
|-
|59
|941.2578
|
|
|-
|60
|957.2184
|153/88
|
|-
|61
|973.1649
|7/4
|
|-
|62
|989.1184
|99/56
|
|-
|63
|1005.0719
|243/136
|
|-
|64
|1021.0255
|9/5
|
|-
|65
|1036.979
|
|
|-
|66
|1052.9325
|
|
|-
|67
|1068.886
|13/7
|
|-
|68
|1084.89355
|15/8
|
|-
|69
|1100.7931
|
|
|-
|70
|1116.7466
|
|
|-
|71
|1132.7001
|
|
|-
|72
|1148.6536
|
|
|-
|73
|1164.9072
|
|
|-
|74
|1180.5607
|160/81
|
|-
|75
|1196.5142
|2/1
|
|-
|76
|1212.4677
|
|
|-
|77
|1228.42125
|
|
|-
|78
|1244.3748
|
|
|-
|79
|1260.3283
|
|
|-
|80
|1276.2818
|
|
|-
|81
|1292.2353
|
|
|-
|82
|1308.1889
|
|
|-
|83
|1324.1424
|
|
|-
|84
|1340.0959
|
|
|-
|85
|1356.0494
|
|
|-
|86
|1372.003
|
|
|-
|87
|1387.9565
|20/9
|
|-
|88
|1403.91
|'''exact''' 9/4
|
|}
|}
==Related regular temperaments==
===5-limit 677&1053===
Comma: |183 -51 -44>
POTE generator: ~|-104 29 25> = 15.9540
Map: [<1 1 3|, <0 44 -51|]
EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836
===2.3.5.11 677&1053===
Commas: 184549376/184528125, 38084983750656/38060880859375
POTE generator: ~|-104 29 25> = 15.9535
Map: [<1 1 3 1|, <0 44 -51 185|]
EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084
===13-limit 677&1053===
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
POTE generator: ~|-104 29 25> = 15.9540
Map: [<1 1 3 1 -3|, <0 44 -51 185 504|]
EDOs: 677, 1053, 1730, 2407, 3084, 4137
[[Category:Edf]]
[[Category:Edonoi]]

Latest revision as of 17:21, 17 January 2025

← 43edf 44edf 45edf →
Prime factorization 22 × 11
Step size 15.9535 ¢ 
Octave 75\44edf (1196.51 ¢)
Twelfth 119\44edf (1898.47 ¢)
Consistency limit 4
Distinct consistency limit 4

44 equal divisions of the perfect fifth (abbreviated 44edf or 44ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 44 equal parts of about 16 ¢ each. Each step represents a frequency ratio of (3/2)1/44, or the 44th root of 3/2.

Theory

44edf corresponds to 75.2185edo. It is related to the regular temperament which tempers out [183 -51 -44 in the 5-limit, which is supported by 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo.

Harmonics

Approximation of prime harmonics in 44edf
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -3.49 -3.49 +5.55 -2.63 -3.40 -5.45 -7.22 +7.61 -4.08 -6.54 +5.63
Relative (%) -21.8 -21.8 +34.8 -16.5 -21.3 -34.2 -45.3 +47.7 -25.6 -41.0 +35.3
Steps
(reduced)
75
(31)
119
(31)
175
(43)
211
(35)
260
(40)
278
(14)
307
(43)
320
(12)
340
(32)
365
(13)
373
(21)

Related regular temperaments

5-limit 677&1053

Comma: |183 -51 -44>

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3|, <0 44 -51|]

EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836

2.3.5.11 677&1053

Commas: 184549376/184528125, 38084983750656/38060880859375

POTE generator: ~|-104 29 25> = 15.9535

Mapping: [<1 1 3 1|, <0 44 -51 185|]

EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084

13-limit 677&1053

Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000

POTE generator: ~|-104 29 25> = 15.9540

Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]

EDOs: 677, 1053, 1730, 2407, 3084, 4137

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 15.9535
2 31.907
3 47.8606
4 63.8141
5 79.7676 22/21
6 95.7211 37/35
7 111.6747 16/15
8 127.6282 14/13
9 143.5817 25/23
10 159.5352 34/31
11 175.48875 31/28
12 191.4423 19/17
13 207.3958 62/55
14 223.3493 33/29
15 239.3028 31/27
16 255.2564 51/44
17 271.2099 62/53
18 287.1634
19 303.1169 81/68
20 319.0705 6/5
21 335.024
22 350.9775 60/49, 49/40
23 366.931
24 382.8845 5/4
25 398.8381 34/27
26 414.7916 14/11
27 430.7451 9/7
28 446.6986 22/17
29 462.6522
30 478.6057
31 494.5592 4/3
32 510.5127
33 526.46625 42/31, 27/20
34 542.4198
35 558.3733
36 574.3268
37 590.2803 45/32
38 606.2339
39 622.1874 63/44
40 638.1409 81/56
41 654.0944
42 670.048
43 686.0015 40/27
44 701.955 exact 3/2 just perfect fifth
45 717.8985 243/160
46 733.862
47 749.8156
48 765.7691 14/9
49 781.7226 11/7
50 797.6761
51 813.6297 8/5
52 829.5832
53 845.5367
54 861.4902
55 877.44375 5/3
56 893.3973
57 909.3508 27/16
58 925.3043
59 941.2578
60 957.2184 153/88
61 973.1649 7/4
62 989.1184 99/56
63 1005.0719 243/136
64 1021.0255 9/5
65 1036.979
66 1052.9325
67 1068.886 13/7
68 1084.89355 15/8
69 1100.7931
70 1116.7466
71 1132.7001
72 1148.6536
73 1164.9072
74 1180.5607 160/81
75 1196.5142 2/1
76 1212.4677
77 1228.42125
78 1244.3748
79 1260.3283
80 1276.2818
81 1292.2353
82 1308.1889
83 1324.1424
84 1340.0959
85 1356.0494
86 1372.003
87 1387.9565 20/9
88 1403.91 exact 9/4