353edo: Difference between revisions
→Music: add another item of music |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 24: | Line 24: | ||
== Table of intervals == | == Table of intervals == | ||
{| class="wikitable mw-collapsible mw-collapsed" | {| class="wikitable mw-collapsible mw-collapsed" | ||
|- | |- | ||
! Step | |||
! Note name<br /><span style="font-size: 0.75em;">(diatonic Hebrew[19] version)</span> | |||
! Associated ratio<br /><span style="font-size: 0.75em;">(2.5.7.13 subgroup)</span> | |||
|- | |- | ||
| | | 0 | ||
|C | | C | ||
| | | 1/1 | ||
|- | |- | ||
| | | 1 | ||
|C- | | C-C# | ||
| | | | ||
|- | |- | ||
| | | 2 | ||
|C- | | C-Db | ||
| | | | ||
|- | |- | ||
| | | 3 | ||
|C-D | | C-D | ||
| | | [[196/195]] | ||
|- | |- | ||
| | | 4 | ||
|C# | | C-D# | ||
| | | | ||
|- | |- | ||
| | | 19 | ||
| | | C# | ||
|[[ | | [[26/25]] | ||
|- | |- | ||
| | | 38 | ||
|Db | | Db | ||
|[[13 | | [[14/13]] | ||
|- | |- | ||
| | | 41 | ||
|Db- | | Db-D | ||
|[[ | | [[13/12]] | ||
|- | |- | ||
| | | 46 | ||
| | | Db-F | ||
| | | [[35/32]] | ||
|- | |- | ||
| | | 57 | ||
|D | | D | ||
| | | | ||
|- | |- | ||
| | | 76 | ||
| | | D# | ||
| | | | ||
|- | |- | ||
| | | 95 | ||
| | | Eb | ||
| | | | ||
|- | |- | ||
| | | 114 | ||
|E | | E | ||
|[[ | | [[5/4]] | ||
|- | |- | ||
| | | 133 | ||
|E | | E# | ||
|13/10 | | [[13/10]] I (patent val approximation) | ||
|- | |- | ||
| | | 134 | ||
| | | E#-C# | ||
| | | 13/10 II (direct approximation) | ||
|- | |- | ||
| | | 152 | ||
|F | | F | ||
| | | | ||
|- | |- | ||
| | | 171 | ||
| | | F# | ||
| | | [[7/5]] | ||
|- | |- | ||
| | | 190 | ||
|Gb | | Gb | ||
| | | | ||
|- | |- | ||
| | | 206 | ||
| | | Gb-Bb | ||
| | | 3/2 | ||
|- | |- | ||
| | | 209 | ||
|G | | G | ||
| | | [[98/65]] | ||
|- | |- | ||
| | | 228 | ||
| | | G# | ||
| | | | ||
|- | |- | ||
| | | 247 | ||
| | | Ab | ||
| | | [[13/8]] | ||
|- | |- | ||
| | | 266 | ||
|A | | A | ||
| | | | ||
|- | |- | ||
| | | 285 | ||
| | | A# | ||
| | | [[7/4]] | ||
|- | |- | ||
| | | 304 | ||
| | | Bb | ||
| | | | ||
|- | |- | ||
| | | 323 | ||
|B | | B | ||
| | | | ||
|- | |- | ||
|353 | | 342 | ||
|C | | B#/Cb | ||
|2/1 | | | ||
|- | |||
| 353 | |||
| C | |||
| 2/1 | |||
|} | |} | ||
== Regular temperament properties == | == Regular temperament properties == | ||
Assuming 353edo is treated as the 2.5.7.11.13.17 subgroup temperament. | Assuming 353edo is treated as the 2.5.7.11.13.17 subgroup temperament. | ||
{ | {{comma basis begin}} | ||
|- | |- | ||
| 2.5 | | 2.5 | ||
| {{monzo| 820 -353 }} | | {{monzo| 820 -353 }} | ||
| {{mapping| 353 820 }} | | {{mapping| 353 820 }} | ||
| | | −0.263 | ||
| 0.263 | | 0.263 | ||
| 7.74 | | 7.74 | ||
Line 166: | Line 156: | ||
| 3136/3125, {{monzo| 209 -9 -67 }} | | 3136/3125, {{monzo| 209 -9 -67 }} | ||
| {{mapping| 353 820 991 }} | | {{mapping| 353 820 991 }} | ||
| | | −0.177 | ||
| 0.247 | | 0.247 | ||
| 7.26 | | 7.26 | ||
Line 173: | Line 163: | ||
| 3136/3125, 5767168/5764801, {{monzo| -20 -6 1 9 }} | | 3136/3125, 5767168/5764801, {{monzo| -20 -6 1 9 }} | ||
| {{mapping| 353 820 991 1221 }} | | {{mapping| 353 820 991 1221 }} | ||
| | | −0.089 | ||
| 0.263 | | 0.263 | ||
| 7.73 | | 7.73 | ||
Line 180: | Line 170: | ||
| 3136/3125, 4394/4375, 6656/6655, 5767168/5764801 | | 3136/3125, 4394/4375, 6656/6655, 5767168/5764801 | ||
| {{mapping| 353 820 991 1221 1306 }} | | {{mapping| 353 820 991 1221 1306 }} | ||
| | | −0.024 | ||
| 0.268 | | 0.268 | ||
| 7.89 | | 7.89 | ||
Line 187: | Line 177: | ||
| 3136/3125, 4394/4375, 7744/7735, 60112/60025, 64141/64000 | | 3136/3125, 4394/4375, 7744/7735, 60112/60025, 64141/64000 | ||
| {{mapping| 353 820 991 1221 1306 1443 }} | | {{mapping| 353 820 991 1221 1306 1443 }} | ||
| | | −0.037 | ||
| 0.247 | | 0.247 | ||
| 7.26 | | 7.26 | ||
{{comma basis end}} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{ | {{rank-2 begin}} | ||
|- | |- | ||
| 1 | | 1 | ||
Line 217: | Line 202: | ||
| 27/20 | | 27/20 | ||
| [[Marvo]] (353c) / [[zarvo]] (353cd) | | [[Marvo]] (353c) / [[zarvo]] (353cd) | ||
{{rank-2 end}} | |||
{{orf}} | |||
== Scales == | == Scales == | ||
* RectifiedHebrew[19] | * RectifiedHebrew[19] – 18L 1s | ||
* RectifiedHebrew[130] | * RectifiedHebrew[130] – 93L 37s | ||
* Austro-Hungarian Minor[9] | * Austro-Hungarian Minor[9] – 57 38 38 38 38 38 38 38 30 | ||
== See also == | == See also == | ||
Line 231: | Line 216: | ||
== Music == | == Music == | ||
; [[Eliora]] | ; [[Eliora]] | ||
* [https://www.youtube.com/watch?v=JrSEGE6_oys ''Snow On My City''] (2022) | * [https://www.youtube.com/watch?v=JrSEGE6_oys ''Snow On My City''] (2022) – cover of [[wikipedia:Naomi Shemer|Naomi Shemer]] in Rectified Hebrew and apparatus | ||
; [[Mercury Amalgam]] | ; [[Mercury Amalgam]] | ||
* [https://www.youtube.com/watch?v=z-SxvrnkTzU ''Bottom Text''] (2022) in Rectified Hebrew | * [https://www.youtube.com/watch?v=z-SxvrnkTzU ''Bottom Text''] (2022) in Rectified Hebrew |
Revision as of 06:00, 16 November 2024
← 352edo | 353edo | 354edo → |
Theory
353edo is inconsistent in the 5-odd-limit and harmonic 3 is about halfway between its steps. It is suitable for use with the 2.9.15.7.11.13.17.23.29.31.37 subgroup. This makes 353edo an "upside-down" edo – poor approximation of the low harmonics, but an improvement over the high ones. Nonetheless, it provides the optimal patent val for didacus, the 2.5.7 subgroup temperament tempering out 3136/3125.
Using the patent val nonetheless, 353edo supports apparatus, marvo and zarvo.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.67 | +1.22 | +0.01 | +0.06 | -0.61 | -0.87 | -0.45 | +0.43 | +1.64 | -1.66 | +0.62 |
Relative (%) | -49.2 | +35.9 | +0.4 | +1.6 | -17.9 | -25.5 | -13.2 | +12.6 | +48.2 | -48.8 | +18.3 | |
Steps (reduced) |
559 (206) |
820 (114) |
991 (285) |
1119 (60) |
1221 (162) |
1306 (247) |
1379 (320) |
1443 (31) |
1500 (88) |
1550 (138) |
1597 (185) |
Subsets and supersets
353edo is the 71st prime edo.
Miscellaneous properties
Eliora associates 353edo with a reformed Hebrew calendar. In the original Hebrew calendar, years number 3, 6, 8, 11, 14, 17, and 19 within a 19-year pattern (makhzor (מחזור), plural: makhzorim) are leap. When converted to 19edo, this results in 5L 2s mode, and simply the diatonic major scale. Following this logic, a temperament (→ rectified hebrew) can be constructed for the Rectified Hebrew calendar. The 11-step perfect fifth in this scale becomes 209\353, and it corresponds to 98/65, which is sharp of 3/2 by 196/195.
In addition, every sub-pattern in a 19-note generator is actually a Hebrew makhzor, that is a mini-19edo on its own, until it is truncated to an 11-note pattern. Just as the original calendar reform consists of 18 makhzorim with 1 hendecaeteris, Hebrew[130] scale consists of a stack of naively 18 "major scales" finished with one 11-edo tetratonic.
The number 353 in this version of the Hebrew calendar must not be confused with the number of days in shanah chaserah (שנה חסרה), the deficient year.
It is possible to use a superpyth-ish fifth of Rectified Hebrew fifth, 209\353, as a generator. In this case, 76 & 353 temperament is obtained. In the 2.5.7.13 subgroup, this results in the fifth being equal to 98/65 and the comma basis of 10985/10976, [-103 0 -38 51 0 13⟩.
Table of intervals
Step | Note name (diatonic Hebrew[19] version) |
Associated ratio (2.5.7.13 subgroup) |
---|---|---|
0 | C | 1/1 |
1 | C-C# | |
2 | C-Db | |
3 | C-D | 196/195 |
4 | C-D# | |
19 | C# | 26/25 |
38 | Db | 14/13 |
41 | Db-D | 13/12 |
46 | Db-F | 35/32 |
57 | D | |
76 | D# | |
95 | Eb | |
114 | E | 5/4 |
133 | E# | 13/10 I (patent val approximation) |
134 | E#-C# | 13/10 II (direct approximation) |
152 | F | |
171 | F# | 7/5 |
190 | Gb | |
206 | Gb-Bb | 3/2 |
209 | G | 98/65 |
228 | G# | |
247 | Ab | 13/8 |
266 | A | |
285 | A# | 7/4 |
304 | Bb | |
323 | B | |
342 | B#/Cb | |
353 | C | 2/1 |
Regular temperament properties
Assuming 353edo is treated as the 2.5.7.11.13.17 subgroup temperament. Template:Comma basis begin |- | 2.5 | [820 -353⟩ | [⟨353 820]] | −0.263 | 0.263 | 7.74 |- | 2.5.7 | 3136/3125, [209 -9 -67⟩ | [⟨353 820 991]] | −0.177 | 0.247 | 7.26 |- | 2.5.7.11 | 3136/3125, 5767168/5764801, [-20 -6 1 9⟩ | [⟨353 820 991 1221]] | −0.089 | 0.263 | 7.73 |- | 2.5.7.11.13 | 3136/3125, 4394/4375, 6656/6655, 5767168/5764801 | [⟨353 820 991 1221 1306]] | −0.024 | 0.268 | 7.89 |- | 2.5.7.11.13.17 | 3136/3125, 4394/4375, 7744/7735, 60112/60025, 64141/64000 | [⟨353 820 991 1221 1306 1443]] | −0.037 | 0.247 | 7.26 Template:Comma basis end
Rank-2 temperaments
Template:Rank-2 begin |- | 1 | 19\353 | 64.59 | 26/25 | Rectified hebrew |- | 1 | 34\353 | 115.58 | 77/72 | Apparatus |- | 1 | 152\353 | 516.71 | 27/20 | Marvo (353c) / zarvo (353cd) Template:Rank-2 end Template:Orf
Scales
- RectifiedHebrew[19] – 18L 1s
- RectifiedHebrew[130] – 93L 37s
- Austro-Hungarian Minor[9] – 57 38 38 38 38 38 38 38 30
See also
Music
- Snow On My City (2022) – cover of Naomi Shemer in Rectified Hebrew and apparatus
- Bottom Text (2022) in Rectified Hebrew