836edo: Difference between revisions
ArrowHead294 (talk | contribs) mNo edit summary |
|||
Line 16: | Line 16: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{ | {{comma basis begin}} | ||
|- | |- | ||
| 2.3 | | 2.3 | ||
Line 60: | Line 52: | ||
| 0.0337 | | 0.0337 | ||
| 2.35 | | 2.35 | ||
|- | |- style="border-top: double;" | ||
| 2.3.5.7.11.13 | |||
| 2200/2197, 3025/3024, 4096/4095, 4375/4374, 31250/31213 | |||
| {{mapping| 836 1325 1941 2347 2892 3094 }} (836) | |||
| | | −0.0085 | ||
| 0.0785 | |||
| 5.47 | |||
|- | |- | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 1275/1274, 2200/2197, 2500/2499, 3025/3024, 4096/4095, 4375/4374 | | 1275/1274, 2200/2197, 2500/2499, 3025/3024, 4096/4095, 4375/4374 | ||
| {{mapping| 836 1325 1941 2347 2892 3094 3417 }} (836) | | {{mapping| 836 1325 1941 2347 2892 3094 3417 }} (836) | ||
| | | −0.0014 | ||
| 0.0747 | | 0.0747 | ||
| 5.21 | | 5.21 | ||
|- | |- style="border-top: double;" | ||
| 2.3.5.7.11.13 | |||
| 1716/1715, 2080/2079, 3025/3024, 15379/15360, 234375/234256 | |||
| {{mapping| 836 1325 1941 2347 2892 3093 }} (836f) | |||
| +0.0561 | |||
| 0.0805 | |||
| 5.60 | |||
|- | |- | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
Line 88: | Line 80: | ||
| 0.0747 | | 0.0747 | ||
| 5.20 | | 5.20 | ||
{{comma basis end}} | |||
* 836et is notable in the 11-limit with a lower absolute error than any previous equal temperaments, past [[612edo|612]] and before [[1084edo|1084]]. | * 836et is notable in the 11-limit with a lower absolute error than any previous equal temperaments, past [[612edo|612]] and before [[1084edo|1084]]. | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{ | {{rank-2 begin}} | ||
|- | |- | ||
| 1 | | 1 | ||
Line 113: | Line 99: | ||
|- | |- | ||
| 2 | | 2 | ||
| 265\836<br>(56\836) | | 265\836<br />(56\836) | ||
| 380.38<br>(80.38) | | 380.38<br />(80.38) | ||
| 81/65<br>(22/21) | | 81/65<br />(22/21) | ||
| [[Quasithird]] (836) | | [[Quasithird]] (836) | ||
|- | |- | ||
| 19 | | 19 | ||
| 347\836<br>(5\836) | | 347\836<br />(5\836) | ||
| 498.09<br>(7.18) | | 498.09<br />(7.18) | ||
| 4/3<br>(225/224) | | 4/3<br />(225/224) | ||
| [[Enneadecal]] | | [[Enneadecal]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 347\836<br>(5\836) | | 347\836<br />(5\836) | ||
| 498.09<br>(7.18) | | 498.09<br />(7.18) | ||
| 4/3<br>({{monzo| 16 -13 2 }}) | | 4/3<br />({{monzo| 16 -13 2 }}) | ||
| [[Major arcana]] | | [[Major arcana]] | ||
|- | |- | ||
| 38 | | 38 | ||
| 347\836<br>(5\836) | | 347\836<br />(5\836) | ||
| 498.09<br>(7.18) | | 498.09<br />(7.18) | ||
| 4/3<br>(225/224) | | 4/3<br />(225/224) | ||
| [[Hemienneadecal]] | | [[Hemienneadecal]] | ||
|- | |- | ||
| 44 | | 44 | ||
| 347\836<br>(5\836) | | 347\836<br />(5\836) | ||
| 498.09<br>(7.18) | | 498.09<br />(7.18) | ||
| 4/3<br>(18375/18304) | | 4/3<br />(18375/18304) | ||
| [[Ruthenium]] | | [[Ruthenium]] | ||
{{rank-2 end}} | |||
{{orf}} | |||
[[Category:Quasithird]] | [[Category:Quasithird]] |
Revision as of 05:30, 16 November 2024
← 835edo | 836edo | 837edo → |
Theory
836edo is a strong 11-limit system, having the lowest absolute error and beating 612edo.
The equal temperament tempers out the counterschisma and the enneadeca in the 5-limit; 4375/4374, 703125/702464 in the 7-limit; 3025/3024 and 9801/9800 in the 11-limit. It supports enneadecal in the 7-limit as well as hemienneadecal in the 11-limit. It also tunes orga and quasithird. In addition, it is divisible by 44 and in light of that it tunes ruthenium in the 7-limit and also 11-limit.
Extending it to the 13-limit requires choosing which mapping one wants to use, as both are nearly equally far off the mark. Using the patent val, it tempers out 2200/2197, 4096/4095, 31250/31213 in the 13-limit; and 1275/1274, 2500/2499, 2601/2600 in the 17-limit. It provides the optimal patent val for 13-limit quasithird. Using the 836f val, it tempers out 1716/1715, 2080/2079, 15379/15360 in the 13-limit; and 2431/2430, 2500/2499, 4914/4913, 5832/5831, 11271/11264 in the 17-limit. It gives a good tuning for 13-limit orga.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.041 | -0.189 | +0.074 | -0.122 | +0.621 | -0.171 | -0.384 | +0.434 | -0.391 | +0.419 |
Relative (%) | +0.0 | -2.9 | -13.2 | +5.1 | -8.5 | +43.2 | -11.9 | -26.7 | +30.2 | -27.2 | +29.2 | |
Steps (reduced) |
836 (0) |
1325 (489) |
1941 (269) |
2347 (675) |
2892 (384) |
3094 (586) |
3417 (73) |
3551 (207) |
3782 (438) |
4061 (717) |
4142 (798) |
Subsets and supersets
Since 836 factors into 22 × 11 × 19, 836edo has subset edos 2, 4, 11, 19, 22, 38, 44, 76, 209, 418. 1672edo, which doubles it, provides a good correction for harmonic 13.
Regular temperament properties
Template:Comma basis begin |- | 2.3 | [-1325 836⟩ | [⟨836 1325]] | +0.0130 | 0.0130 | 0.90 |- | 2.3.5 | [-14 -19 19⟩, [-69 45 -1⟩ | [⟨836 1325 1941]] | +0.0358 | 0.0340 | 2.37 |- | 2.3.5.7 | 4375/4374, 703125/702464, [41 -4 2 -14⟩ | [⟨836 1325 1941 2347]] | +0.0203 | 0.0399 | 2.78 |- | 2.3.5.7.11 | 3025/3024, 4375/4374, 234375/234256, [22 -4 2 -6 -1⟩ | [⟨836 1325 1941 2347 2892]] | +0.0233 | 0.0362 | 2.52 |- | 2.3.5.7.11.17 | 2500/2499, 3025/3024, 4375/4374, 57375/57344, 108086/108045 | [⟨836 1325 1941 2347 2892 3417]] | +0.0264 | 0.0337 | 2.35 |- style="border-top: double;" | 2.3.5.7.11.13 | 2200/2197, 3025/3024, 4096/4095, 4375/4374, 31250/31213 | [⟨836 1325 1941 2347 2892 3094]] (836) | −0.0085 | 0.0785 | 5.47 |- | 2.3.5.7.11.13.17 | 1275/1274, 2200/2197, 2500/2499, 3025/3024, 4096/4095, 4375/4374 | [⟨836 1325 1941 2347 2892 3094 3417]] (836) | −0.0014 | 0.0747 | 5.21 |- style="border-top: double;" | 2.3.5.7.11.13 | 1716/1715, 2080/2079, 3025/3024, 15379/15360, 234375/234256 | [⟨836 1325 1941 2347 2892 3093]] (836f) | +0.0561 | 0.0805 | 5.60 |- | 2.3.5.7.11.13.17 | 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4914/4913, 11271/11264 | [⟨836 1325 1941 2347 2892 3093 3417]] (836f) | +0.0541 | 0.0747 | 5.20 Template:Comma basis end
- 836et is notable in the 11-limit with a lower absolute error than any previous equal temperaments, past 612 and before 1084.
Rank-2 temperaments
Template:Rank-2 begin
|-
| 1
| 347\836
| 498.09
| 4/3
| Counterschismic
|-
| 2
| 161\836
| 231.10
| 8/7
| Orga (836f)
|-
| 2
| 265\836
(56\836)
| 380.38
(80.38)
| 81/65
(22/21)
| Quasithird (836)
|-
| 19
| 347\836
(5\836)
| 498.09
(7.18)
| 4/3
(225/224)
| Enneadecal
|-
| 22
| 347\836
(5\836)
| 498.09
(7.18)
| 4/3
([16 -13 2⟩)
| Major arcana
|-
| 38
| 347\836
(5\836)
| 498.09
(7.18)
| 4/3
(225/224)
| Hemienneadecal
|-
| 44
| 347\836
(5\836)
| 498.09
(7.18)
| 4/3
(18375/18304)
| Ruthenium
Template:Rank-2 end
Template:Orf