|
|
Line 293: |
Line 293: |
| | '''[[16/1]]''' | | | '''[[16/1]]''' |
| | P1 +4 oct | | | P1 +4 oct |
| |}
| |
|
| |
| == Approximation to JI ==
| |
|
| |
| === Interval mappings ===
| |
|
| |
| The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in '''bold'''; inconsistent intervals are in ''italics''.
| |
|
| |
| {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
| |
| |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by direct approximation)
| |
| |-
| |
| ! Ratio
| |
| ! Error (abs, [[Cent|¢]])
| |
| ! Error (rel, [[Relative cent|%]])
| |
| |-
| |
| | [[4/3]]
| |
| | +0.991
| |
| | +0.993
| |
| |-
| |
| | [[8/3]]
| |
| | -1.323
| |
| | -1.325
| |
| |-
| |
| | [[16/9]]
| |
| | +1.982
| |
| | +1.986
| |
| |-
| |
| | '''[[2/1]]'''
| |
| | '''-2.314'''
| |
| | '''-2.318'''
| |
| |-
| |
| | [[15/1]]
| |
| | +2.669
| |
| | +2.674
| |
| |-
| |
| | [[3/2]]
| |
| | -3.305
| |
| | -3.311
| |
| |-
| |
| | [[16/3]]
| |
| | -3.637
| |
| | -3.644
| |
| |-
| |
| | [[9/8]]
| |
| | -4.296
| |
| | -4.304
| |
| |-
| |
| | [[4/1]]
| |
| | -4.628
| |
| | -4.637
| |
| |-
| |
| | [[15/2]]
| |
| | +4.983
| |
| | +4.992
| |
| |-
| |
| | '''[[3/1]]'''
| |
| | '''-5.619'''
| |
| | '''-5.629'''
| |
| |-
| |
| | [[10/1]]
| |
| | +5.974
| |
| | +5.985
| |
| |-
| |
| | [[9/4]]
| |
| | -6.609
| |
| | -6.622
| |
| |-
| |
| | [[8/1]]
| |
| | -6.941
| |
| | -6.955
| |
| |-
| |
| | [[15/4]]
| |
| | +7.296
| |
| | +7.311
| |
| |-
| |
| | [[6/1]]
| |
| | -7.932
| |
| | -7.948
| |
| |-
| |
| | '''[[5/1]]'''
| |
| | '''+8.287'''
| |
| | '''+8.303'''
| |
| |-
| |
| | [[9/2]]
| |
| | -8.923
| |
| | -8.941
| |
| |-
| |
| | [[16/1]]
| |
| | -9.255
| |
| | -9.273
| |
| |-
| |
| | [[15/8]]
| |
| | +9.610
| |
| | +9.629
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/11]]''
| |
| | ''+10.212''
| |
| | ''+10.232''
| |
| |-
| |
| | [[12/1]]
| |
| | -10.246
| |
| | -10.266
| |
| |-
| |
| | [[5/2]]
| |
| | +10.601
| |
| | +10.622
| |
| |-
| |
| | [[9/1]]
| |
| | -11.237
| |
| | -11.259
| |
| |-
| |
| | [[10/3]]
| |
| | +11.592
| |
| | +11.614
| |
| |-
| |
| | [[16/15]]
| |
| | -11.924
| |
| | -11.947
| |
| |-
| |
| | [[5/4]]
| |
| | +12.915
| |
| | +12.940
| |
| |-
| |
| | [[5/3]]
| |
| | +13.906
| |
| | +13.933
| |
| |-
| |
| | [[14/5]]
| |
| | +14.017
| |
| | +14.044
| |
| |-
| |
| | [[8/5]]
| |
| | -15.229
| |
| | -15.258
| |
| |-
| |
| | [[11/7]]
| |
| | +15.965
| |
| | +15.996
| |
| |-
| |
| | [[6/5]]
| |
| | -16.220
| |
| | -16.251
| |
| |-
| |
| | [[7/5]]
| |
| | +16.331
| |
| | +16.362
| |
| |-
| |
| | [[10/9]]
| |
| | +17.211
| |
| | +17.244
| |
| |-
| |
| | [[16/5]]
| |
| | -17.543
| |
| | -17.577
| |
| |-
| |
| | [[14/11]]
| |
| | -18.279
| |
| | -18.315
| |
| |-
| |
| | [[12/5]]
| |
| | -18.534
| |
| | -18.569
| |
| |-
| |
| | [[10/7]]
| |
| | -18.645
| |
| | -18.681
| |
| |-
| |
| | [[9/5]]
| |
| | -19.524
| |
| | -19.562
| |
| |-
| |
| | [[15/14]]
| |
| | -19.636
| |
| | -19.674
| |
| |-
| |
| | [[15/7]]
| |
| | -21.949
| |
| | -21.992
| |
| |-
| |
| | [[14/1]]
| |
| | +22.304
| |
| | +22.347
| |
| |-
| |
| | '''[[7/1]]'''
| |
| | '''+24.618'''
| |
| | '''+24.666'''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/7]]''
| |
| | ''+26.177''
| |
| | ''+26.228''
| |
| |-
| |
| | [[7/2]]
| |
| | +26.932
| |
| | +26.984
| |
| |-
| |
| | [[14/3]]
| |
| | +27.923
| |
| | +27.977
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[14/13]]''
| |
| | ''-28.491''
| |
| | ''-28.546''
| |
| |-
| |
| | [[7/4]]
| |
| | +29.246
| |
| | +29.302
| |
| |-
| |
| | [[7/3]]
| |
| | +30.237
| |
| | +30.295
| |
| |-
| |
| | [[8/7]]
| |
| | -31.560
| |
| | -31.621
| |
| |-
| |
| | [[11/5]]
| |
| | +32.296
| |
| | +32.359
| |
| |-
| |
| | [[7/6]]
| |
| | +32.551
| |
| | +32.614
| |
| |-
| |
| | [[14/9]]
| |
| | +33.542
| |
| | +33.606
| |
| |-
| |
| | [[16/7]]
| |
| | -33.874
| |
| | -33.939
| |
| |-
| |
| | [[11/10]]
| |
| | +34.610
| |
| | +34.677
| |
| |-
| |
| | [[12/7]]
| |
| | -34.864
| |
| | -34.932
| |
| |-
| |
| | [[9/7]]
| |
| | -35.855
| |
| | -35.925
| |
| |-
| |
| | [[13/9]]
| |
| | -37.775
| |
| | -37.848
| |
| |-
| |
| | [[15/11]]
| |
| | -37.915
| |
| | -37.988
| |
| |-
| |
| | [[13/12]]
| |
| | -38.765
| |
| | -38.840
| |
| |-
| |
| | [[16/13]]
| |
| | +39.756
| |
| | +39.833
| |
| |-
| |
| | '''[[11/1]]'''
| |
| | '''+40.584'''
| |
| | '''+40.662'''
| |
| |-
| |
| | [[13/6]]
| |
| | -41.079
| |
| | -41.159
| |
| |-
| |
| | [[13/8]]
| |
| | -42.070
| |
| | -42.151
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/5]]''
| |
| | ''+42.508''
| |
| | ''+42.590''
| |
| |-
| |
| | [[11/2]]
| |
| | +42.897
| |
| | +42.980
| |
| |-
| |
| | [[13/3]]
| |
| | -43.393
| |
| | -43.477
| |
| |-
| |
| | [[13/4]]
| |
| | -44.384
| |
| | -44.470
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/10]]''
| |
| | ''+44.822''
| |
| | ''+44.909''
| |
| |-
| |
| | [[11/4]]
| |
| | +45.211
| |
| | +45.299
| |
| |-
| |
| | [[11/3]]
| |
| | +46.202
| |
| | +46.291
| |
| |-
| |
| | [[13/2]]
| |
| | -46.698
| |
| | -46.788
| |
| |-
| |
| | [[11/8]]
| |
| | +47.525
| |
| | +47.617
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[11/9]]''
| |
| | ''-47.986''
| |
| | ''-48.079''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[15/13]]''
| |
| | ''-48.127''
| |
| | ''-48.220''
| |
| |-
| |
| | [[11/6]]
| |
| | +48.516
| |
| | +48.610
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[12/11]]''
| |
| | ''+48.977''
| |
| | ''+49.072''
| |
| |-
| |
| | '''[[13/1]]'''
| |
| | '''-49.012'''
| |
| | '''-49.106'''
| |
| |-
| |
| | [[16/11]]
| |
| | -49.839
| |
| | -49.935
| |
| |}
| |
|
| |
| {| class="wikitable center-1 right-2 right-3 mw-collapsible mw-collapsed"
| |
| |+ style="white-space: nowrap;" | 16-integer-limit intervals in 34zpi (by patent val mapping)
| |
| |-
| |
| ! Ratio
| |
| ! Error (abs, [[Cent|¢]])
| |
| ! Error (rel, [[Relative cent|%]])
| |
| |-
| |
| | [[4/3]]
| |
| | +0.991
| |
| | +0.993
| |
| |-
| |
| | [[8/3]]
| |
| | -1.323
| |
| | -1.325
| |
| |-
| |
| | [[16/9]]
| |
| | +1.982
| |
| | +1.986
| |
| |-
| |
| | '''[[2/1]]'''
| |
| | '''-2.314'''
| |
| | '''-2.318'''
| |
| |-
| |
| | [[15/1]]
| |
| | +2.669
| |
| | +2.674
| |
| |-
| |
| | [[3/2]]
| |
| | -3.305
| |
| | -3.311
| |
| |-
| |
| | [[16/3]]
| |
| | -3.637
| |
| | -3.644
| |
| |-
| |
| | [[9/8]]
| |
| | -4.296
| |
| | -4.304
| |
| |-
| |
| | [[4/1]]
| |
| | -4.628
| |
| | -4.637
| |
| |-
| |
| | [[15/2]]
| |
| | +4.983
| |
| | +4.992
| |
| |-
| |
| | '''[[3/1]]'''
| |
| | '''-5.619'''
| |
| | '''-5.629'''
| |
| |-
| |
| | [[10/1]]
| |
| | +5.974
| |
| | +5.985
| |
| |-
| |
| | [[9/4]]
| |
| | -6.609
| |
| | -6.622
| |
| |-
| |
| | [[8/1]]
| |
| | -6.941
| |
| | -6.955
| |
| |-
| |
| | [[15/4]]
| |
| | +7.296
| |
| | +7.311
| |
| |-
| |
| | [[6/1]]
| |
| | -7.932
| |
| | -7.948
| |
| |-
| |
| | '''[[5/1]]'''
| |
| | '''+8.287'''
| |
| | '''+8.303'''
| |
| |-
| |
| | [[9/2]]
| |
| | -8.923
| |
| | -8.941
| |
| |-
| |
| | [[16/1]]
| |
| | -9.255
| |
| | -9.273
| |
| |-
| |
| | [[15/8]]
| |
| | +9.610
| |
| | +9.629
| |
| |-
| |
| | [[12/1]]
| |
| | -10.246
| |
| | -10.266
| |
| |-
| |
| | [[5/2]]
| |
| | +10.601
| |
| | +10.622
| |
| |-
| |
| | [[9/1]]
| |
| | -11.237
| |
| | -11.259
| |
| |-
| |
| | [[10/3]]
| |
| | +11.592
| |
| | +11.614
| |
| |-
| |
| | [[16/15]]
| |
| | -11.924
| |
| | -11.947
| |
| |-
| |
| | [[5/4]]
| |
| | +12.915
| |
| | +12.940
| |
| |-
| |
| | [[5/3]]
| |
| | +13.906
| |
| | +13.933
| |
| |-
| |
| | [[14/5]]
| |
| | +14.017
| |
| | +14.044
| |
| |-
| |
| | [[8/5]]
| |
| | -15.229
| |
| | -15.258
| |
| |-
| |
| | [[11/7]]
| |
| | +15.965
| |
| | +15.996
| |
| |-
| |
| | [[6/5]]
| |
| | -16.220
| |
| | -16.251
| |
| |-
| |
| | [[7/5]]
| |
| | +16.331
| |
| | +16.362
| |
| |-
| |
| | [[10/9]]
| |
| | +17.211
| |
| | +17.244
| |
| |-
| |
| | [[16/5]]
| |
| | -17.543
| |
| | -17.577
| |
| |-
| |
| | [[14/11]]
| |
| | -18.279
| |
| | -18.315
| |
| |-
| |
| | [[12/5]]
| |
| | -18.534
| |
| | -18.569
| |
| |-
| |
| | [[10/7]]
| |
| | -18.645
| |
| | -18.681
| |
| |-
| |
| | [[9/5]]
| |
| | -19.524
| |
| | -19.562
| |
| |-
| |
| | [[15/14]]
| |
| | -19.636
| |
| | -19.674
| |
| |-
| |
| | [[15/7]]
| |
| | -21.949
| |
| | -21.992
| |
| |-
| |
| | [[14/1]]
| |
| | +22.304
| |
| | +22.347
| |
| |-
| |
| | '''[[7/1]]'''
| |
| | '''+24.618'''
| |
| | '''+24.666'''
| |
| |-
| |
| | [[7/2]]
| |
| | +26.932
| |
| | +26.984
| |
| |-
| |
| | [[14/3]]
| |
| | +27.923
| |
| | +27.977
| |
| |-
| |
| | [[7/4]]
| |
| | +29.246
| |
| | +29.302
| |
| |-
| |
| | [[7/3]]
| |
| | +30.237
| |
| | +30.295
| |
| |-
| |
| | [[8/7]]
| |
| | -31.560
| |
| | -31.621
| |
| |-
| |
| | [[11/5]]
| |
| | +32.296
| |
| | +32.359
| |
| |-
| |
| | [[7/6]]
| |
| | +32.551
| |
| | +32.614
| |
| |-
| |
| | [[14/9]]
| |
| | +33.542
| |
| | +33.606
| |
| |-
| |
| | [[16/7]]
| |
| | -33.874
| |
| | -33.939
| |
| |-
| |
| | [[11/10]]
| |
| | +34.610
| |
| | +34.677
| |
| |-
| |
| | [[12/7]]
| |
| | -34.864
| |
| | -34.932
| |
| |-
| |
| | [[9/7]]
| |
| | -35.855
| |
| | -35.925
| |
| |-
| |
| | [[13/9]]
| |
| | -37.775
| |
| | -37.848
| |
| |-
| |
| | [[15/11]]
| |
| | -37.915
| |
| | -37.988
| |
| |-
| |
| | [[13/12]]
| |
| | -38.765
| |
| | -38.840
| |
| |-
| |
| | [[16/13]]
| |
| | +39.756
| |
| | +39.833
| |
| |-
| |
| | '''[[11/1]]'''
| |
| | '''+40.584'''
| |
| | '''+40.662'''
| |
| |-
| |
| | [[13/6]]
| |
| | -41.079
| |
| | -41.159
| |
| |-
| |
| | [[13/8]]
| |
| | -42.070
| |
| | -42.151
| |
| |-
| |
| | [[11/2]]
| |
| | +42.897
| |
| | +42.980
| |
| |-
| |
| | [[13/3]]
| |
| | -43.393
| |
| | -43.477
| |
| |-
| |
| | [[13/4]]
| |
| | -44.384
| |
| | -44.470
| |
| |-
| |
| | [[11/4]]
| |
| | +45.211
| |
| | +45.299
| |
| |-
| |
| | [[11/3]]
| |
| | +46.202
| |
| | +46.291
| |
| |-
| |
| | [[13/2]]
| |
| | -46.698
| |
| | -46.788
| |
| |-
| |
| | [[11/8]]
| |
| | +47.525
| |
| | +47.617
| |
| |-
| |
| | [[11/6]]
| |
| | +48.516
| |
| | +48.610
| |
| |-
| |
| | '''[[13/1]]'''
| |
| | '''-49.012'''
| |
| | '''-49.106'''
| |
| |-
| |
| | [[16/11]]
| |
| | -49.839
| |
| | -49.935
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[12/11]]''
| |
| | ''-50.830''
| |
| | ''-50.928''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[15/13]]''
| |
| | ''+51.680''
| |
| | ''+51.780''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[11/9]]''
| |
| | ''+51.821''
| |
| | ''+51.921''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/10]]''
| |
| | ''-54.985''
| |
| | ''-55.091''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/5]]''
| |
| | ''-57.299''
| |
| | ''-57.410''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[14/13]]''
| |
| | ''+71.316''
| |
| | ''+71.454''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/7]]''
| |
| | ''-73.630''
| |
| | ''-73.772''
| |
| |- style="background-color: #cccccc;"
| |
| | ''[[13/11]]''
| |
| | ''-89.595''
| |
| | ''-89.768''
| |
| |} | | |} |
|
| |
|
34 zeta peak index (abbreviated 34zpi), is the equal-step tuning system obtained from the 34th peak of the Riemann zeta function.
Tuning
|
Strength
|
Closest EDO
|
Integer limit
|
ZPI
|
Steps per octave
|
Step size (cents)
|
Height
|
Integral
|
Gap
|
EDO
|
Octave (cents)
|
Consistent
|
Distinct
|
34zpi
|
12.0231830072926
|
99.8071807833375
|
5.193290
|
1.269599
|
15.899282
|
12edo
|
1197.68616940005
|
10
|
6
|
Intervals
Intervals in 34zpi
JI ratios are comprised of 16-integer-limit ratios, and are stylized as follows to indicate their accuracy:
- Bold Underlined: relative error < 8.333 %
- Bold: relative error < 16.667 %
- Normal: relative error < 25 %
- Small: relative error < 33.333 %
- Small Small: relative error < 41.667 %
- Small Small Small: relative error < 50 %
|
⟨12 19] Whole tone = 2 steps Limma = 1 step Apotome = 1 step
|
Degree
|
Cents
|
Ratios
|
Ups and Downs Notation
|
0
|
0.000
|
|
P1
|
1
|
99.807
|
16/15, 15/14, 14/13, 13/12
|
m2
|
2
|
199.614
|
12/11, 11/10, 10/9, 9/8, 8/7, 15/13
|
M2
|
3
|
299.422
|
7/6, 13/11, 6/5, 11/9
|
m3
|
4
|
399.229
|
16/13, 5/4, 14/11, 9/7
|
M3
|
5
|
499.036
|
13/10, 4/3, 15/11
|
P4
|
6
|
598.843
|
11/8, 7/5, 10/7, 13/9, 16/11
|
A4, d5
|
7
|
698.650
|
3/2
|
P5
|
8
|
798.457
|
14/9, 11/7, 8/5, 13/8
|
m6
|
9
|
898.265
|
5/3, 12/7
|
M6
|
10
|
998.072
|
7/4, 16/9, 9/5
|
m7
|
11
|
1097.879
|
11/6, 13/7, 15/8
|
M7
|
12
|
1197.686
|
2/1
|
P1 +1 oct
|
13
|
1297.493
|
15/7, 13/6
|
m2 +1 oct
|
14
|
1397.301
|
11/5, 9/4, 16/7
|
M2 +1 oct
|
15
|
1497.108
|
7/3, 12/5
|
m3 +1 oct
|
16
|
1596.915
|
5/2
|
M3 +1 oct
|
17
|
1696.722
|
13/5, 8/3
|
P4 +1 oct
|
18
|
1796.529
|
11/4, 14/5
|
A4 +1 oct, d5 +1 oct
|
19
|
1896.336
|
3/1
|
P5 +1 oct
|
20
|
1996.144
|
16/5, 13/4
|
m6 +1 oct
|
21
|
2095.951
|
10/3
|
M6 +1 oct
|
22
|
2195.758
|
7/2
|
m7 +1 oct
|
23
|
2295.565
|
11/3, 15/4
|
M7 +1 oct
|
24
|
2395.372
|
4/1
|
P1 +2 oct
|
25
|
2495.180
|
13/3
|
m2 +2 oct
|
26
|
2594.987
|
9/2
|
M2 +2 oct
|
27
|
2694.794
|
14/3
|
m3 +2 oct
|
28
|
2794.601
|
5/1
|
M3 +2 oct
|
29
|
2894.408
|
16/3
|
P4 +2 oct
|
30
|
2994.215
|
11/2
|
A4 +2 oct, d5 +2 oct
|
31
|
3094.023
|
6/1
|
P5 +2 oct
|
32
|
3193.830
|
13/2
|
m6 +2 oct
|
33
|
3293.637
|
|
M6 +2 oct
|
34
|
3393.444
|
7/1
|
m7 +2 oct
|
35
|
3493.251
|
15/2
|
M7 +2 oct
|
36
|
3593.059
|
8/1
|
P1 +3 oct
|
37
|
3692.866
|
|
m2 +3 oct
|
38
|
3792.673
|
9/1
|
M2 +3 oct
|
39
|
3892.480
|
|
m3 +3 oct
|
40
|
3992.287
|
10/1
|
M3 +3 oct
|
41
|
4092.094
|
|
P4 +3 oct
|
42
|
4191.902
|
11/1
|
A4 +3 oct, d5 +3 oct
|
43
|
4291.709
|
12/1
|
P5 +3 oct
|
44
|
4391.516
|
13/1
|
m6 +3 oct
|
45
|
4491.323
|
|
M6 +3 oct
|
46
|
4591.130
|
14/1
|
m7 +3 oct
|
47
|
4690.937
|
15/1
|
M7 +3 oct
|
48
|
4790.745
|
16/1
|
P1 +4 oct
|
Approximation to JI
Interval mappings
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
16-integer-limit intervals in 34zpi (by direct approximation)
Ratio
|
Error (abs, ¢)
|
Error (rel, %)
|
4/3
|
+0.991
|
+0.993
|
8/3
|
-1.323
|
-1.325
|
16/9
|
+1.982
|
+1.986
|
2/1
|
-2.314
|
-2.318
|
15/1
|
+2.669
|
+2.674
|
3/2
|
-3.305
|
-3.311
|
16/3
|
-3.637
|
-3.644
|
9/8
|
-4.296
|
-4.304
|
4/1
|
-4.628
|
-4.637
|
15/2
|
+4.983
|
+4.992
|
3/1
|
-5.619
|
-5.629
|
10/1
|
+5.974
|
+5.985
|
9/4
|
-6.609
|
-6.622
|
8/1
|
-6.941
|
-6.955
|
15/4
|
+7.296
|
+7.311
|
6/1
|
-7.932
|
-7.948
|
5/1
|
+8.287
|
+8.303
|
9/2
|
-8.923
|
-8.941
|
16/1
|
-9.255
|
-9.273
|
15/8
|
+9.610
|
+9.629
|
13/11
|
+10.212
|
+10.232
|
12/1
|
-10.246
|
-10.266
|
5/2
|
+10.601
|
+10.622
|
9/1
|
-11.237
|
-11.259
|
10/3
|
+11.592
|
+11.614
|
16/15
|
-11.924
|
-11.947
|
5/4
|
+12.915
|
+12.940
|
5/3
|
+13.906
|
+13.933
|
14/5
|
+14.017
|
+14.044
|
8/5
|
-15.229
|
-15.258
|
11/7
|
+15.965
|
+15.996
|
6/5
|
-16.220
|
-16.251
|
7/5
|
+16.331
|
+16.362
|
10/9
|
+17.211
|
+17.244
|
16/5
|
-17.543
|
-17.577
|
14/11
|
-18.279
|
-18.315
|
12/5
|
-18.534
|
-18.569
|
10/7
|
-18.645
|
-18.681
|
9/5
|
-19.524
|
-19.562
|
15/14
|
-19.636
|
-19.674
|
15/7
|
-21.949
|
-21.992
|
14/1
|
+22.304
|
+22.347
|
7/1
|
+24.618
|
+24.666
|
13/7
|
+26.177
|
+26.228
|
7/2
|
+26.932
|
+26.984
|
14/3
|
+27.923
|
+27.977
|
14/13
|
-28.491
|
-28.546
|
7/4
|
+29.246
|
+29.302
|
7/3
|
+30.237
|
+30.295
|
8/7
|
-31.560
|
-31.621
|
11/5
|
+32.296
|
+32.359
|
7/6
|
+32.551
|
+32.614
|
14/9
|
+33.542
|
+33.606
|
16/7
|
-33.874
|
-33.939
|
11/10
|
+34.610
|
+34.677
|
12/7
|
-34.864
|
-34.932
|
9/7
|
-35.855
|
-35.925
|
13/9
|
-37.775
|
-37.848
|
15/11
|
-37.915
|
-37.988
|
13/12
|
-38.765
|
-38.840
|
16/13
|
+39.756
|
+39.833
|
11/1
|
+40.584
|
+40.662
|
13/6
|
-41.079
|
-41.159
|
13/8
|
-42.070
|
-42.151
|
13/5
|
+42.508
|
+42.590
|
11/2
|
+42.897
|
+42.980
|
13/3
|
-43.393
|
-43.477
|
13/4
|
-44.384
|
-44.470
|
13/10
|
+44.822
|
+44.909
|
11/4
|
+45.211
|
+45.299
|
11/3
|
+46.202
|
+46.291
|
13/2
|
-46.698
|
-46.788
|
11/8
|
+47.525
|
+47.617
|
11/9
|
-47.986
|
-48.079
|
15/13
|
-48.127
|
-48.220
|
11/6
|
+48.516
|
+48.610
|
12/11
|
+48.977
|
+49.072
|
13/1
|
-49.012
|
-49.106
|
16/11
|
-49.839
|
-49.935
|
16-integer-limit intervals in 34zpi (by patent val mapping)
Ratio
|
Error (abs, ¢)
|
Error (rel, %)
|
4/3
|
+0.991
|
+0.993
|
8/3
|
-1.323
|
-1.325
|
16/9
|
+1.982
|
+1.986
|
2/1
|
-2.314
|
-2.318
|
15/1
|
+2.669
|
+2.674
|
3/2
|
-3.305
|
-3.311
|
16/3
|
-3.637
|
-3.644
|
9/8
|
-4.296
|
-4.304
|
4/1
|
-4.628
|
-4.637
|
15/2
|
+4.983
|
+4.992
|
3/1
|
-5.619
|
-5.629
|
10/1
|
+5.974
|
+5.985
|
9/4
|
-6.609
|
-6.622
|
8/1
|
-6.941
|
-6.955
|
15/4
|
+7.296
|
+7.311
|
6/1
|
-7.932
|
-7.948
|
5/1
|
+8.287
|
+8.303
|
9/2
|
-8.923
|
-8.941
|
16/1
|
-9.255
|
-9.273
|
15/8
|
+9.610
|
+9.629
|
12/1
|
-10.246
|
-10.266
|
5/2
|
+10.601
|
+10.622
|
9/1
|
-11.237
|
-11.259
|
10/3
|
+11.592
|
+11.614
|
16/15
|
-11.924
|
-11.947
|
5/4
|
+12.915
|
+12.940
|
5/3
|
+13.906
|
+13.933
|
14/5
|
+14.017
|
+14.044
|
8/5
|
-15.229
|
-15.258
|
11/7
|
+15.965
|
+15.996
|
6/5
|
-16.220
|
-16.251
|
7/5
|
+16.331
|
+16.362
|
10/9
|
+17.211
|
+17.244
|
16/5
|
-17.543
|
-17.577
|
14/11
|
-18.279
|
-18.315
|
12/5
|
-18.534
|
-18.569
|
10/7
|
-18.645
|
-18.681
|
9/5
|
-19.524
|
-19.562
|
15/14
|
-19.636
|
-19.674
|
15/7
|
-21.949
|
-21.992
|
14/1
|
+22.304
|
+22.347
|
7/1
|
+24.618
|
+24.666
|
7/2
|
+26.932
|
+26.984
|
14/3
|
+27.923
|
+27.977
|
7/4
|
+29.246
|
+29.302
|
7/3
|
+30.237
|
+30.295
|
8/7
|
-31.560
|
-31.621
|
11/5
|
+32.296
|
+32.359
|
7/6
|
+32.551
|
+32.614
|
14/9
|
+33.542
|
+33.606
|
16/7
|
-33.874
|
-33.939
|
11/10
|
+34.610
|
+34.677
|
12/7
|
-34.864
|
-34.932
|
9/7
|
-35.855
|
-35.925
|
13/9
|
-37.775
|
-37.848
|
15/11
|
-37.915
|
-37.988
|
13/12
|
-38.765
|
-38.840
|
16/13
|
+39.756
|
+39.833
|
11/1
|
+40.584
|
+40.662
|
13/6
|
-41.079
|
-41.159
|
13/8
|
-42.070
|
-42.151
|
11/2
|
+42.897
|
+42.980
|
13/3
|
-43.393
|
-43.477
|
13/4
|
-44.384
|
-44.470
|
11/4
|
+45.211
|
+45.299
|
11/3
|
+46.202
|
+46.291
|
13/2
|
-46.698
|
-46.788
|
11/8
|
+47.525
|
+47.617
|
11/6
|
+48.516
|
+48.610
|
13/1
|
-49.012
|
-49.106
|
16/11
|
-49.839
|
-49.935
|
12/11
|
-50.830
|
-50.928
|
15/13
|
+51.680
|
+51.780
|
11/9
|
+51.821
|
+51.921
|
13/10
|
-54.985
|
-55.091
|
13/5
|
-57.299
|
-57.410
|
14/13
|
+71.316
|
+71.454
|
13/7
|
-73.630
|
-73.772
|
13/11
|
-89.595
|
-89.768
|
See also