User:Akselai/SandBox

From Xenharmonic Wiki
Jump to navigation Jump to search

├──┼─┼╫┼───────┤ ├──┼─┼╫┼───────┤

3:4:6 truncated linear fractal scales
Order Number of steps Step visualization Chord Intervals < 1/16
0 1 ├───────────────────────────────────────────────────────────────┤ 1:2 1
1 2 ├────────────────────┼──────────────────────────────────────────┤ 3:4:6 1/3 2/3
2 4 ├──────┼─────────────┼─────────────┼────────────────────────────┤ 9:10:12:14:18 1/9 2/9 4/9
3 8 ├─┼────┼────┼────────┼────┼────────┼────────┼───────────────────┤ 27:28:30:32:36:38:42:46:54 2/27 4/27 8/27
4 15 ├─┼─┼──┼─┼──┼──┼─────┼─┼──┼──┼─────┼──┼─────┼─────┼─────────────┤ 81:84:86:90:92:96:100:108:110:114:118:126:130:138:146:162 8/81 16/81
5 20 ├─┼─┼──┼─┼──┼──┼─┼───┼─┼──┼──┼─┼───┼──┼─┼───┼─┼───┼───┼─────────┤ 243:252:258:270:276:288:300:308:324:330:342:

354:362:378:390:398:414:422:438:454:486

16/243 32/243
6 26 ├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼──────┤ 729:756:774:810:828:864:900:924:940:972:990:1026:1062:1086:1102:

1134:1170:1194:1210:1242:1266:1282:1314:1330:1362:1394:1458

64/729
7 27 ├─┼─┼──┼─┼──┼──┼─┼┼──┼─┼──┼──┼─┼┼──┼──┼─┼┼──┼─┼┼──┼┼──┼──┼─┼────┤ 2187:2268:2322:2430:2484:2592:2700:2772:2820:2916:2970:3078:3186:3258:

3306:3402:3510:3582:3630:3726:3798:3846:3942:3990:4086:4182:4246:4374

none
order = 8
ratio = [0, 1/3] 
# the "shape" of the ratio, only input integers please. 
# [a, b] corresponds to the ratio 1:2^{a/(a+b)}:2,
# [a, b, c] corresponds to the ratio 1:2^{a/(a+b+c)}:2^{(a+b)/(a+b+c)}:2, etc.

c = [0, 1]
if order == 0:
    c = []
for i in range(0, order-1):
    b = []
    for j in range(len(c)-1):
        if (c[j+1]-c[j] > 1/16):
            b.append([c[j] + x*(c[j+1]-c[j]) for x in ratio])
        else:
            b.append([c[j]])
    b.append([1])
    c = [x for xs in b for x in xs]
c = [1+x for x in c]
print([i / gcd(c) for i in c])
print([c[i+1]-c[i] for i in range(len(c)-1)])

Numbered Musical Notation

WT13C XII Prelude Example (Diamond MOS accidentals)
(ovb = 2/1 ("octave") lower)
[13edo]   [21221212]          [6\13 higher than written]

     ||       |             |               |              |            • •• | • •    • •••  | •             |              |
     ||  1234 | 5 3 6 4 3 1 |&812 -123 4567 |&8 6 4 6 7 6  | 5345 6 7&8 1 23 | 4 2 &8 2 3218 | 1 7 5 7 &8765 | 7 4 2 6 5432 |
  3  ||• ════ | ――― ――― ――― | ══― ════ ════ | ――― ――― ―――  | ════ ――═══ ――══ | ―――  ――― ════ | ――― ―――  ════ | ――― ――― ════ |
     ||       |             | •             |              |                 |               |               |              |
 --- ||• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ etc.
     ||       |             |               |              |                 |               |               |              |
  4  ||• 0    | 1   2   3   | 4   2   &8    | 2   6  ♮8 12 | 3•     2   1 7  |&8•     3 1    | 5•   &8  6    | 2•    5 3    |
     ||       |             |               |         ――══ |        ―   ―――  |        ―      |       ―       |       ―      |
     ||  ovb  |             |          •    |     •   •    |              •  | •             | •     •  •    | •     • •    |

https://en.xen.wiki/w/Modeless_Interchange

1L 6s 2L 5s 3L 4s 4L 3s 5L 2s 6L 1s
Bright generator range 6\7 < g < 1\1 3\7 < g < 1\2 2\7 < g < 1\3 5\7 < g < 3\4 4\7 < g < 3\5 1\7 < g < 1\6
Possible 0-2-4 chords 1:g2:g4, 1:g2:2g-3, 1:2g-5:2g-3
Ideal Δ-ratio +2 +3, +5 +6, +1 +1 +2 +3, +4 +5, +1 +1 +1 +2, +5 +6, +1 +5 +1 +2, +5 +6, +3 +1 +2 +3, +5 +6, +1 +1 +4 +5, +6 +5, +1 +2
Optimal value of g 1.1180, 1.1146, 1.1183
in 19edo +4+1, +1+3, +1+1 (L:s=7:2) +5+1, +3+10, +1+1 (L:s=7:1) +5+1, +4+5, +5+4 (L:s=5:1) +1+2, +4+5, +6+5 (L:s=4:1) +2+3, +5+6, +1+1 (L:s≒3:2) +5:9, +4+5, +1+1 (L:s≒3:1)

some well known scales

LmLsLsLmLss
Scale structure
Step pattern
Brightest mode LmLsLsLmLss
Darkest mode ssLmLsLsLmL
Is chiral? no
Maximum variety 4
Has strict variety? no
SLMLSLMLSL
Scale structure
Step pattern
Brightest mode LMLSLMLSLS
Darkest mode SLSLMLSLML
Is chiral? no
Maximum variety 4
Has strict variety? no
mLLsLmLsL
Scale structure
Step pattern
Brightest mode LH LLsLmLsLm

RH LLmLsLmLs

Darkest mode LH sLmLsLmLL

RH sLmLsLLmL

Is chiral? yes
Maximum variety 3
Has strict variety? yes
xyzxyxyz
Scale structure
Step pattern
Brightest mode LH xyxzyxzy

RH xyxyzxyz

Darkest mode LH zyxzyxyx

RH zxyzxyxy

Is chiral? yes
Maximum variety 4
Has strict variety? no
aabab
Scale structure
Step pattern
Brightest mode aabab
Darkest mode babaa
Is chiral? no
Maximum variety 2
Has strict variety? yes

aghfasdgasdhfasghdsgahdfhasfhdfghasfgdhfashdfgh

aghfasdgasdhfasghdsgahdfhasfhdfghasfgdhfashdfgh
Scale structure
Step pattern
Brightest mode LH aghfasdgasdhfasghdsgahdfhasfhdfghasfgdhfashdfgh

RH afhdgfsahgfdhfsahfdhagsdhgsafhdsagdsafhgahgfdhs

Darkest mode LH shdfghaghfasdgasdhfasghdsgahdfhasfhdfghasfgdhfa

RH sdhgsafhdsagdsafhgahgfdhsafhdgfsahgfdhfsahfdhag

Is chiral? yes
Maximum variety 37
Has strict variety? no

the most useless temperament(s) in all of xen history

Rank-2

Microphone

This temperament additionally tempers out the parismina [1 -26 0 2 10⟩, which is even smaller than the blare comma. Surprisingly, this temperament admits an optimal generator very close to 3/2.

Subgroup: 2.9.7.11 (lol wrong!! should have been 2.3.7.11 instead)

Comma list: [-52 2 0 10 6, [1 -26 0 2 10

Sval mapping[44 88 175 75], 0 2 -2 3]]

Optimal tunings:

  • CTE: ~64/63 = 1\44 = 27.273, ~[25 0 0 -5 -3 = 701.953

Optimal ET sequence176, 484, 660, 836, 1012, 1848, 4708, 6556, 11264, 17820, 29084, 46904, 75988, 122892

Badness (Smith): 2.466 × 10-3