Arcturus

From Xenharmonic Wiki
Jump to navigation Jump to search
This page on a regular temperament, temperament collection, or aspect of regular temperament theory is under the jurisdiction of WikiProject TempClean and is being revised for clarity.

Arcturus is the non-octave rank-2 regular temperament of the 3.5.7 subgroup that tempers out the arcturus comma, 15625/15309. Having an ~5/3 as a generator, this temperament is the application of the Pythagorean principle of tuning a stack of the next higher prime number and then factoring out powers of the equivalence to tritave composition. However, a heptatonic 2L 5s MOS will not suffice to produce an understandable rendition of it because a very close ~5/3 generates a L:s ratio between 4:1 and 5:1, which is beginning to get too lopsided to still be a complete presentation of a temperament.

For technical data, see No-twos subgroup temperaments #Arcturus.

Etymology

This temperament is named after the star Arcturus, following a series of non-octave temperaments that are named after stars.

Icon-Todo.png Todo: add etymology
Add name (person who coined the term) and year (when it was coined).

Chords

Arcturus contains the triad 5:7:9 (used in Bohlen–Pierce harmony) and the triad 27:35:45 which divides 5/3 into two nearly-equal parts.

Tuning spectrum

Below is a list of MOS families which present it completely (however smearily) using a generator of 845.3 to 951.0 cents:

Generator Cents
Hekts
L s 2g Notes
6\13 877.825
600
146.304
100
0 1755.651
1200
L = 1, s = 0
43\93 879.399
601.075
143.158
97.8495
20.451
13.9785
1758.797
1202.151
L = 7, s = 1
37\80 879.654
601.25
142.647
97.5
23.774
16.25
1759.38
1202.5
L = 6, s = 1
68\147 879.816
601.3605
142.323
97.279
25.877
17.687
1759.632
1202.721
31\67 880.009
601.4925
141.937
97.015
28.387
19.403
1760.081
1202.985
L = 5, s = 1
87\188 880.16
601.596
141.634
96.8085
30.35
20.745
1760.32
1203.191
56\121 880.243
601.653
141.468
96.694
31.437
21.488
1760.487
1203.306
81\175 880.3335
601.714
141.288
96.571
32.605
22.286
1760.667
1203.429
25\54 880.535
601.852
140.886
96.296
35.221
24.074
1761.069
1203.704
L = 4, s = 1
94\203 880.708
601.97
140.5385
96.059
37.477
25.616
1761.4165
1203.971
69\149 880.711
602.013
140.413
95.973
38.294
26.1745
1761.542
1204.027
113\244 880.823
602.049
140.308
95.902
38.9745
26.639
1761.647
1204.098
44\95 880.9055
602.105
140.144
95.7895
40.041
27.368
1761.811
1204.2105
L = 7, s = 2
107\231 880.992
602.1645
139.971
95.671
41.168
28.1385
1761.984
1204.329.
63\136 881.053
602.206
139.85
95.588
41.955
28.6765
1762.105
1204.412
82\177 881.132
602.26
139.692
95.48
42.982
22.034
1762.263
1204.52
19\41 881.394
602.439
139.167
95.122
46.389
31.707
1762.788
1204.878
L = 3, s = 1
89\192 881.635
602.604
138.684
94.792
49.53
33.854
1763.271
1205.208
70\151 881.701
602.649
138.553
94.702
50.383
25.828
1763.402
1205.298
121\261 881.794
602.682
138.4565
89.655
51.01
34.866
1763.4985
1205.362
51\110 881.8155
602.727
138.324
94.5455
51.8715
35.4545
1763.631
1205.4545
134\289 881.875
602.768
138.204
94.464
52.649
35.986
1763.751
1205.536
83\179 881.912
602.793
138.131
94.413
53.172
36.313
1763.824
1205.586
115\248 881.955
602.823
138.045
94.355
53.684
36.6935
1763.91
1205.645
32\69 882.066
602.899
137.823
94.203
55.129
37.681
1764.132
1205.797
L = 5, s = 2
109\235 882.183
602.979
137.588
94.043
56.654
38.723
1764.367
1205.957
77\166 882.232
603.012
137.491
93.976
57.288
39.157
1764.464
1206.024
122\263 882.276
603.042
137.404
93.916
57.854
39.544
1764.551
1206.084
45\97 882.35
603.093
137.2545
93.814
58.823
40.206
1764.7005
1203.185
L = 7, s = 3
103\222 882.439
603.153
137.078
93.694
59.972
40.991
1764.877
1206.306
58\125 882.507
603.2
136.941
93.6
60.863
41.6
1765.014
1206.4
71\153 882.607
603.268
136.742
93.464
62.155
42.484
1765.213
1206.536
13\28 883.0505
603.571
135.854
92.857
67.93
46.429
1766.101
1207.143
L = 2, s = 1
72\155 883.489
603.871
134.9775
92.258
73.624
50.323
1766.9775
1207.742
59\127 883.585
603.937
134.784
92.126
74.88
51.181
1767.171
1207.574
105\226 883.652
603.982
134.652
92.035
75.742
51.77
1767.303
1207.964
46\99 883.737
604.04
134.482
91.919
76.847
52.525
1767.473
1208.081
L = 7, s = 4
125\269 883.808
604.089
134.339
91.822
77.775
53.16
1767.616
1208.178
79\170 883.85
604.118
134.256
91.765
78.316
53.529
1767.699
1208.235
112\241 883.896
604.149
134.163
91.701
78.919
53.942
1767.792
1208.299
33\71 884.007
604.225
133.94
91.549
80.364
54.93
1768.0145
1208.451
L = 5, s = 3
119\256 884.112
604.297
133.731
91.406
81.725
55.859
1768.224
1208.594
86\185 884.152
604.324
133.651
91.351
82.247
56.216
1768.304
1208.649
139\299 884.186
604.348
133.582
91.304
82.694
56.522
1768.373
1208.696
Golden Arcturus is near here
53\114 884.24
604.386
133.4705
91.228
83.419
57.0175
1768.4845
1208.772
126\271 884.303
604.428
133.347
91.144
84.219
57.565
1768.608
1208.856
73\157 884.3485
604.459
133.258
91.083
84.8005
57.962
1768.697
1208.917
5/3-Pythagorean is near here
93\200 884.409
604.5
133.137
91
85.588
58.5
1768.818
1209
20\43 884.63
604.651
132.6945
90.698
88.463
60.465
1769.2605
1209.302
L = 3, s = 2
87\187 884.867
604.813
132.2215
90.374
91.538
62.567
1769.7335
1209.626
67\144 884.937
604.861
132.08
90.278
92.456
63.194
1769.875
1209.722
114\245 884.991
604.898
131.972
90.204
93.157
52.6735
1769.983
1209.896
47\101 885.068
604.9505
131.819
90.099
94.156
64.356
1770.136
1209.901
L = 7, s = 5
121\260 885.141
605
131.674
90
95.098
65
1770.281
1210
74\159 885.187
605.031
131.582
89.937
95.696
65.409
1770.373
1210.063
101\217 885.242
605.069
131.4715
89.862
96.4125
65.899
1770.4835
1210.138
27\58 885.393
605.172
131.169
89.655
98.377
67.241
1770.786
1210.345
L = 4, s = 3
88\189 885.566
605.291
130.822
89.418
100.6325
68.783
1771.133
1210.582
61\131 885.643
605.3435
130.669
89.313
101.631
69.466
1771.286
1210.687
95\204 885.714
605.392
130.526
89.216
102.556
70.098
1771.429
1210.784
34\73 885.842
605.4795
130.271
89.041
104.217
71.233
1771.684
1210.959
L = 5, s = 4
75\161 886.004
605.59
129.947
88.82
106.3205
72.671
1772.008
1211.18
41\88 886.138
605.682
129.679
88.636
108.065
73.864
1772.276
1211.364
L = 6, s = 5
48\103 886.348
605.825
129.259
88.3495
110.7935
75.728
1772.696
1211.6505
L = 7, s = 6
7\15 887.579
606.667
126.797
86.667
1775.158
1213.333
L = 1, s = 1

Scales