Arcturus
This page on a regular temperament, temperament collection, or aspect of regular temperament theory is under the jurisdiction of WikiProject TempClean and is being revised for clarity. |
Arcturus is the non-octave rank-2 regular temperament of the 3.5.7 subgroup that tempers out the arcturus comma, 15625/15309. Having an ~5/3 as a generator, this temperament is the application of the Pythagorean principle of tuning a stack of the next higher prime number and then factoring out powers of the equivalence to tritave composition. However, a heptatonic 2L 5s MOS will not suffice to produce an understandable rendition of it because a very close ~5/3 generates a L:s ratio between 4:1 and 5:1, which is beginning to get too lopsided to still be a complete presentation of a temperament.
For technical data, see No-twos subgroup temperaments #Arcturus.
Etymology
This temperament is named after the star Arcturus, following a series of non-octave temperaments that are named after stars.
Chords
Arcturus contains the triad 5:7:9 (used in Bohlen–Pierce harmony) and the triad 27:35:45 which divides 5/3 into two nearly-equal parts.
Tuning spectrum
Below is a list of MOS families which present it completely (however smearily) using a generator of 845.3 to 951.0 cents:
Generator | Cents Hekts |
L | s | 2g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
6\13 | 877.825 600 |
146.304 100 |
0 | 1755.651 1200 |
L = 1, s = 0 | ||||||
43\93 | 879.399 601.075 |
143.158 97.8495 |
20.451 13.9785 |
1758.797 1202.151 |
L = 7, s = 1 | ||||||
37\80 | 879.654 601.25 |
142.647 97.5 |
23.774 16.25 |
1759.38 1202.5 |
L = 6, s = 1 | ||||||
68\147 | 879.816 601.3605 |
142.323 97.279 |
25.877 17.687 |
1759.632 1202.721 |
|||||||
31\67 | 880.009 601.4925 |
141.937 97.015 |
28.387 19.403 |
1760.081 1202.985 |
L = 5, s = 1 | ||||||
87\188 | 880.16 601.596 |
141.634 96.8085 |
30.35 20.745 |
1760.32 1203.191 |
|||||||
56\121 | 880.243 601.653 |
141.468 96.694 |
31.437 21.488 |
1760.487 1203.306 |
|||||||
81\175 | 880.3335 601.714 |
141.288 96.571 |
32.605 22.286 |
1760.667 1203.429 |
|||||||
25\54 | 880.535 601.852 |
140.886 96.296 |
35.221 24.074 |
1761.069 1203.704 |
L = 4, s = 1 | ||||||
94\203 | 880.708 601.97 |
140.5385 96.059 |
37.477 25.616 |
1761.4165 1203.971 |
|||||||
69\149 | 880.711 602.013 |
140.413 95.973 |
38.294 26.1745 |
1761.542 1204.027 |
|||||||
113\244 | 880.823 602.049 |
140.308 95.902 |
38.9745 26.639 |
1761.647 1204.098 |
|||||||
44\95 | 880.9055 602.105 |
140.144 95.7895 |
40.041 27.368 |
1761.811 1204.2105 |
L = 7, s = 2 | ||||||
107\231 | 880.992 602.1645 |
139.971 95.671 |
41.168 28.1385 |
1761.984 1204.329. |
|||||||
63\136 | 881.053 602.206 |
139.85 95.588 |
41.955 28.6765 |
1762.105 1204.412 |
|||||||
82\177 | 881.132 602.26 |
139.692 95.48 |
42.982 22.034 |
1762.263 1204.52 |
|||||||
19\41 | 881.394 602.439 |
139.167 95.122 |
46.389 31.707 |
1762.788 1204.878 |
L = 3, s = 1 | ||||||
89\192 | 881.635 602.604 |
138.684 94.792 |
49.53 33.854 |
1763.271 1205.208 |
|||||||
70\151 | 881.701 602.649 |
138.553 94.702 |
50.383 25.828 |
1763.402 1205.298 |
|||||||
121\261 | 881.794 602.682 |
138.4565 89.655 |
51.01 34.866 |
1763.4985 1205.362 |
|||||||
51\110 | 881.8155 602.727 |
138.324 94.5455 |
51.8715 35.4545 |
1763.631 1205.4545 |
|||||||
134\289 | 881.875 602.768 |
138.204 94.464 |
52.649 35.986 |
1763.751 1205.536 |
|||||||
83\179 | 881.912 602.793 |
138.131 94.413 |
53.172 36.313 |
1763.824 1205.586 |
|||||||
115\248 | 881.955 602.823 |
138.045 94.355 |
53.684 36.6935 |
1763.91 1205.645 |
|||||||
32\69 | 882.066 602.899 |
137.823 94.203 |
55.129 37.681 |
1764.132 1205.797 |
L = 5, s = 2 | ||||||
109\235 | 882.183 602.979 |
137.588 94.043 |
56.654 38.723 |
1764.367 1205.957 |
|||||||
77\166 | 882.232 603.012 |
137.491 93.976 |
57.288 39.157 |
1764.464 1206.024 |
|||||||
122\263 | 882.276 603.042 |
137.404 93.916 |
57.854 39.544 |
1764.551 1206.084 |
|||||||
45\97 | 882.35 603.093 |
137.2545 93.814 |
58.823 40.206 |
1764.7005 1203.185 |
L = 7, s = 3 | ||||||
103\222 | 882.439 603.153 |
137.078 93.694 |
59.972 40.991 |
1764.877 1206.306 |
|||||||
58\125 | 882.507 603.2 |
136.941 93.6 |
60.863 41.6 |
1765.014 1206.4 |
|||||||
71\153 | 882.607 603.268 |
136.742 93.464 |
62.155 42.484 |
1765.213 1206.536 |
|||||||
13\28 | 883.0505 603.571 |
135.854 92.857 |
67.93 46.429 |
1766.101 1207.143 |
L = 2, s = 1 | ||||||
72\155 | 883.489 603.871 |
134.9775 92.258 |
73.624 50.323 |
1766.9775 1207.742 |
|||||||
59\127 | 883.585 603.937 |
134.784 92.126 |
74.88 51.181 |
1767.171 1207.574 |
|||||||
105\226 | 883.652 603.982 |
134.652 92.035 |
75.742 51.77 |
1767.303 1207.964 |
|||||||
46\99 | 883.737 604.04 |
134.482 91.919 |
76.847 52.525 |
1767.473 1208.081 |
L = 7, s = 4 | ||||||
125\269 | 883.808 604.089 |
134.339 91.822 |
77.775 53.16 |
1767.616 1208.178 |
|||||||
79\170 | 883.85 604.118 |
134.256 91.765 |
78.316 53.529 |
1767.699 1208.235 |
|||||||
112\241 | 883.896 604.149 |
134.163 91.701 |
78.919 53.942 |
1767.792 1208.299 |
|||||||
33\71 | 884.007 604.225 |
133.94 91.549 |
80.364 54.93 |
1768.0145 1208.451 |
L = 5, s = 3 | ||||||
119\256 | 884.112 604.297 |
133.731 91.406 |
81.725 55.859 |
1768.224 1208.594 |
|||||||
86\185 | 884.152 604.324 |
133.651 91.351 |
82.247 56.216 |
1768.304 1208.649 |
|||||||
139\299 | 884.186 604.348 |
133.582 91.304 |
82.694 56.522 |
1768.373 1208.696 |
Golden Arcturus is near here | ||||||
53\114 | 884.24 604.386 |
133.4705 91.228 |
83.419 57.0175 |
1768.4845 1208.772 |
|||||||
126\271 | 884.303 604.428 |
133.347 91.144 |
84.219 57.565 |
1768.608 1208.856 |
|||||||
73\157 | 884.3485 604.459 |
133.258 91.083 |
84.8005 57.962 |
1768.697 1208.917 |
5/3-Pythagorean is near here | ||||||
93\200 | 884.409 604.5 |
133.137 91 |
85.588 58.5 |
1768.818 1209 |
|||||||
20\43 | 884.63 604.651 |
132.6945 90.698 |
88.463 60.465 |
1769.2605 1209.302 |
L = 3, s = 2 | ||||||
87\187 | 884.867 604.813 |
132.2215 90.374 |
91.538 62.567 |
1769.7335 1209.626 |
|||||||
67\144 | 884.937 604.861 |
132.08 90.278 |
92.456 63.194 |
1769.875 1209.722 |
|||||||
114\245 | 884.991 604.898 |
131.972 90.204 |
93.157 52.6735 |
1769.983 1209.896 |
|||||||
47\101 | 885.068 604.9505 |
131.819 90.099 |
94.156 64.356 |
1770.136 1209.901 |
L = 7, s = 5 | ||||||
121\260 | 885.141 605 |
131.674 90 |
95.098 65 |
1770.281 1210 |
|||||||
74\159 | 885.187 605.031 |
131.582 89.937 |
95.696 65.409 |
1770.373 1210.063 |
|||||||
101\217 | 885.242 605.069 |
131.4715 89.862 |
96.4125 65.899 |
1770.4835 1210.138 |
|||||||
27\58 | 885.393 605.172 |
131.169 89.655 |
98.377 67.241 |
1770.786 1210.345 |
L = 4, s = 3 | ||||||
88\189 | 885.566 605.291 |
130.822 89.418 |
100.6325 68.783 |
1771.133 1210.582 |
|||||||
61\131 | 885.643 605.3435 |
130.669 89.313 |
101.631 69.466 |
1771.286 1210.687 |
|||||||
95\204 | 885.714 605.392 |
130.526 89.216 |
102.556 70.098 |
1771.429 1210.784 |
|||||||
34\73 | 885.842 605.4795 |
130.271 89.041 |
104.217 71.233 |
1771.684 1210.959 |
L = 5, s = 4 | ||||||
75\161 | 886.004 605.59 |
129.947 88.82 |
106.3205 72.671 |
1772.008 1211.18 |
|||||||
41\88 | 886.138 605.682 |
129.679 88.636 |
108.065 73.864 |
1772.276 1211.364 |
L = 6, s = 5 | ||||||
48\103 | 886.348 605.825 |
129.259 88.3495 |
110.7935 75.728 |
1772.696 1211.6505 |
L = 7, s = 6 | ||||||
7\15 | 887.579 606.667 |
126.797 86.667 |
1775.158 1213.333 |
L = 1, s = 1 |
Scales
- 9L 2s (3/1-equivalent) (mini chromatic, aka sub-Arcturus)
- 11L 2s (3/1-equivalent) (anti-chromatic, aka anti-Arcturus)
- 15L 2s (3/1-equivalent) (mini enharmonic, aka super-Arcturus 15L 2s)
- 17L 2s (3/1-equivalent) (enharmonic, aka super-Arcturus 17L 2s)
- 2L 17s (3/1-equivalent) (anti-enharmonic, aka trans-Arcturus 2L 7s)