11L 2s (3/1-equivalent)
↖ 10L 1s⟨3/1⟩ | ↑ 11L 1s⟨3/1⟩ | 12L 1s⟨3/1⟩ ↗ |
← 10L 2s⟨3/1⟩ | 11L 2s (3/1-equivalent) | 12L 2s⟨3/1⟩ → |
↙ 10L 3s⟨3/1⟩ | ↓ 11L 3s⟨3/1⟩ | 12L 3s⟨3/1⟩ ↘ |
┌╥╥╥╥╥╥┬╥╥╥╥╥┬┐ │║║║║║║│║║║║║││ │││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLsLLLLLL
11L 2s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 11 large steps and 2 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 1024.1¢ to 1037.4¢, or from 864.5¢ to 877.8¢. Having 11 large steps and 2 small steps, this MOS family is the first which is true Arcturus scale. However, it still has slightly smeary intonation regarding the generator (or major sixth), This smearing causes 3g to be so flat that it tritave reduces into the syntonic continuum of fifths, thus making these scales ridden with pseudo-octaves and pseudo-fifths.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
12|0 | 1 | LLLLLLsLLLLLs |
11|1 | 8 | LLLLLsLLLLLLs |
10|2 | 2 | LLLLLsLLLLLsL |
9|3 | 9 | LLLLsLLLLLLsL |
8|4 | 3 | LLLLsLLLLLsLL |
7|5 | 10 | LLLsLLLLLLsLL |
6|6 | 4 | LLLsLLLLLsLLL |
5|7 | 11 | LLsLLLLLLsLLL |
4|8 | 5 | LLsLLLLLsLLLL |
3|9 | 12 | LsLLLLLLsLLLL |
2|10 | 6 | LsLLLLLsLLLLL |
1|11 | 13 | sLLLLLLsLLLLL |
0|12 | 7 | sLLLLLsLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 146.3¢ |
Major 1-mosstep | M1ms | L | 146.3¢ to 172.9¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 172.9¢ to 292.6¢ |
Major 2-mosstep | M2ms | 2L | 292.6¢ to 345.8¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 345.8¢ to 438.9¢ |
Major 3-mosstep | M3ms | 3L | 438.9¢ to 518.7¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 518.7¢ to 585.2¢ |
Major 4-mosstep | M4ms | 4L | 585.2¢ to 691.6¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 691.6¢ to 731.5¢ |
Major 5-mosstep | M5ms | 5L | 731.5¢ to 864.5¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 5L + s | 864.5¢ to 877.8¢ |
Augmented 6-mosstep | A6ms | 6L | 877.8¢ to 1037.4¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 5L + 2s | 864.5¢ to 1024.1¢ |
Perfect 7-mosstep | P7ms | 6L + s | 1024.1¢ to 1037.4¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 1037.4¢ to 1170.4¢ |
Major 8-mosstep | M8ms | 7L + s | 1170.4¢ to 1210.3¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 7L + 2s | 1210.3¢ to 1316.7¢ |
Major 9-mosstep | M9ms | 8L + s | 1316.7¢ to 1383.2¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 8L + 2s | 1383.2¢ to 1463.0¢ |
Major 10-mosstep | M10ms | 9L + s | 1463.0¢ to 1556.1¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 9L + 2s | 1556.1¢ to 1609.3¢ |
Major 11-mosstep | M11ms | 10L + s | 1609.3¢ to 1729.1¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 10L + 2s | 1729.1¢ to 1755.7¢ |
Major 12-mosstep | M12ms | 11L + s | 1755.7¢ to 1902.0¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 11L + 2s | 1902.0¢ |
Scale tree
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5\11 | 864.525
590.909 |
172.905
118.182 |
0.00 | 691.62
472.727 |
L=1 s=0 | ||||||
36\79 | 866.714
592.405 |
168.528
115.19 |
24.075
16.456 |
698.186
477.215 |
L=7 s=1 | ||||||
31\68 | 867.068
592.647 |
167.82
114.706 |
27.969
19.118 |
699.248
477.941 |
L=6 s=1 | ||||||
57\125 | 867.2915
592.8 |
167.372
114.4 |
30.431
20.8 |
699.919
478.4 |
|||||||
26\57 | 867.558
592.9825 |
166.838
114.035 |
33.368
22.807 |
700.72
478.947 |
L=5 s=1 | ||||||
73\160 | 867.767
593.125 |
166.421
113.75 |
35.662
24.375 |
701.346
479.375 |
|||||||
47\103 | 867.882
593.204 |
166.19
113.592 |
36.931
25.243 |
701.692
479.612 |
|||||||
68\149 | 868.006
593.289 |
165.942
113.423 |
38.294
26.1745 |
702.064
479.866 |
|||||||
21\46 | 868.284
593.478 |
165.387
113.0435. |
41.347
28.261 |
702.896
480.445 |
L=4 s=1 | ||||||
79\173 | 868.523
593.642 |
164.909
112.717 |
43.976
30.058 |
703.613
480.925 |
|||||||
58\127 | 868.609
593.701 |
164.736
112.598 |
44.928
30.709 |
703.873
481.102 |
|||||||
95\208 | 868.681
593.75 |
164.592
112.5 |
45.72
31.25 |
704.089
481.25 |
|||||||
37\81 | 868.794
593.827 |
164.3665
112.346 |
46.962
32.099 |
704.428
481.4815 |
L=7 s=2 | ||||||
90\197 | 868.9135
593.909 |
164.128
112.183 |
48.273
32.995 |
704.785
481.726 |
|||||||
53\116 | 868.997
593.9655 |
163.961
112.069 |
49.1885
33.621 |
705.035
481.897 |
|||||||
69\151 | 869.105
594.04 |
163.744
111.9205 |
50.383
34.437 |
705.36
482.119 |
|||||||
16\35 | 869.465
594.286 |
163.025
111.429 |
54.342
37.143 |
706.44
482.857 |
L=3 s=1 | ||||||
75\164 | 869.7965
594.512 |
162.362
110.976 |
57.986
39.634 |
707.4345
483.537 |
|||||||
59\129 | 869.886
594.574 |
162.182
110.853 |
58.375
40.31 |
707.704
483.721 |
|||||||
102\223 | 869.9525
594.619 |
162.05
110.762 |
59.703
40.807 |
707.9025
483.8565 |
|||||||
43\94 | 870.043
594.681 |
161.8685
110.638 |
60.701
41.489 |
708.175
484.043 |
|||||||
113\247 | 870.125
594.737 |
161.705
110.526 |
61.601
42.105 |
708.4205
484.2105 |
|||||||
70\153 | 870.1755
594.771 |
161.604
110.4575 |
62.155
42.484 |
708.5715
484.314 |
|||||||
97\212 | 870.234
594.811 |
161.487
110.377 |
62.8
42.9245 |
708.747
484.434 |
|||||||
27\59 | 870.386
594.915 |
161.182
110.1695 |
64.473
44.068 |
709.204
484.746 |
L=5 s=2 | ||||||
92\201 | 870.547
595.025 |
160.862
109.95 |
66.237
45.274 |
709.685
485.075 |
|||||||
65\142 | 870.613
595.07 |
160.729
109.859 |
66.97
45.775 |
709.885
485.211 |
|||||||
103\225 | 870.673
595.111 |
160.6095
109.778 |
67.625
46.222 |
710.063
485.333 |
|||||||
38\83 | 870.775
595.181 |
160.406
109.639 |
68.745
46.988 |
710.369
485.542 |
L=7 s=3 | ||||||
87\190 | 870.895
595.263 |
160.165
109.747 |
70.072
47.895 |
710.731
485.7895 |
|||||||
49\107 | 870.989
595.327 |
159.9775
109.346 |
71.101
48.598 |
711.011
485.981 |
|||||||
60\131 | 871.124
595.42 |
159.706
109.16 |
72.593
49.618 |
711.418
486.2595 |
|||||||
11\24 | 871.729
595.833 |
158.496
108.333 |
79.248
54.167 |
713.233
487.5 |
L=2 s=1 | ||||||
61\133 | 872.325
596.241 |
157.3045
107.519 |
85.8024
58.647 |
715.021
488.722 |
|||||||
50\109 | 872.456
596.33 |
157.042
107.339 |
87.246
59.633 |
715.414
488.991 |
|||||||
89\194 | 872.546
596.392 |
156.862
107.2165 |
88.235
60.309 |
715.684
489.175 |
|||||||
39\85 | 872.662
596.471 |
156.632
107.059 |
89.504
61.1765 |
716.03
489.412 |
L=7 s=4 | ||||||
106\231 | 872.759
596.537 |
156.438
106.926 |
90.569
61.905 |
716.321
489.61 |
|||||||
67\146 | 872.815
596.575 |
156.325
106.849 |
91.19
62.329 |
716.49
489.726 |
|||||||
95\207 | 872.878
596.618 |
156.199
106.763 |
91.882
62.802 |
716.679
489.855 |
|||||||
28\61 | 873.0285
596.721 |
155.898
106.557 |
93.539
63.934 |
717.131
490.164 |
L=5 s=3 | ||||||
101\220 | 873.17
596.818 |
155.6145
106.364 |
95.098
65 |
717.556
490.4545 |
|||||||
73\159 | 873.225
596.855 |
155.506
106.289 |
95.696
65.408 |
717.719
490.566 |
|||||||
118\257 | 873.271
596.887 |
155.413
106.226 |
96.208
65.759 |
717.8585
490.6615 |
Golden Anti-Arcturus is near here | ||||||
45\98 | 873.347
596.938 |
155.262
106.122 |
97.0385
66.3265 |
718.085
490.816 |
|||||||
107\233 | 873.43
596.996 |
155.095
106.009 |
97.955
66.953 |
718.335
490.987 |
|||||||
62\135 | 873.49
597.037 |
154.974
105.926 |
98.62
67.407 |
718.516
491.111 |
|||||||
79\172 | 873.572
597.093 |
154.81
105.814 |
99.521
68.023 |
718.762
491.279 |
|||||||
17\37 | 873.871
597.297 |
154.2125
105.405 |
102.808
70.27 |
719.659
491.892 |
L=3 s=2 | ||||||
74\161 | 874.1905
597.5155 |
153.574
104.696 |
106.32
72.671 |
720.6165
492.5465 |
|||||||
57\124 | 874.286
597.581 |
153.3835
104.839 |
107.368
73.387 |
720.902
492.742 |
|||||||
97\211 | 874.3585
597.63 |
153.238
104.739 |
108.168
73.934 |
721.12
492.891 |
|||||||
40\87 | 874.462
597.701 |
153.03
104.598 |
109.308
74.713 |
721.431
493.103 |
L=7 s=5 | ||||||
103\224 | 874.56
597.768 |
152.836
104.464 |
110.381
75.446 |
721.724
493.304 |
|||||||
63\137 | 874.622
597.81 |
152.712
104.38 |
111.063
75.912 |
721.91
493.431 |
|||||||
86\187 | 874.696
597.861 |
152.563
104.278 |
111.88
76.471 |
722.133
493.583 |
|||||||
23\50 | 874.899
598 |
152.156
104 |
114.117
78 |
722.743
494 |
L=4 s=3 | ||||||
75\163 | 875.133
598.1595 |
151.69
103.681 |
116.684
79.755 |
723.443
494.4785 |
|||||||
52\113 | 875.236
598.23 |
151.483
103.54 |
117.82
80.531 |
723.753
494.69 |
|||||||
81\176 | 875.332
598.2955 |
151.292
103.409 |
118.872
81.25 |
724.04
494.886 |
|||||||
29\63 | 875.503
598.413 |
150.949
103.175 |
120.759
82.54 |
724.554
495.238 |
L=5 s=4 | ||||||
64\139 | 875.72
598.561 |
150.514
102.878 |
123.148
84.173 |
725.206
495.6835 |
|||||||
35\76 | 875.9
598.684 |
150.124
102.632 |
125.129
85.526 |
725.746
496.053 |
L=6 s=5 | ||||||
41\89 | 876.1815
598.876 |
149.592
102.247 |
128.222
87.64 |
726.59
496.629 |
L=7 s=6 | ||||||
6\13 | 877.825
600 |
146.304
100 |
731.521
500 |
L=1 s=1 |