2L 17s (3/1-equivalent)
↖ 1L 16s⟨3/1⟩ | ↑ 2L 16s⟨3/1⟩ | 3L 16s⟨3/1⟩ ↗ |
← 1L 17s⟨3/1⟩ | 2L 17s (3/1-equivalent) | 3L 17s⟨3/1⟩ → |
↙ 1L 18s⟨3/1⟩ | ↓ 2L 18s⟨3/1⟩ | 3L 18s⟨3/1⟩ ↘ |
┌╥┬┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┬┬┐ │║││││││││║││││││││││ │││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssssssssLssssssssL
2L 17s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 2 large steps and 17 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 900.9¢ to 951¢, or from 951¢ to 1001¢.
The generator for this scale far sharper than 5/3 (884¢). However, the accumulated sharpness of the generator leads to "ordinary" 8/5 and 5/3 intervals in three steps after factoring out tritaves.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0 | 1 | LssssssssLsssssssss |
17|1 | 10 | LsssssssssLssssssss |
16|2 | 19 | sLssssssssLssssssss |
15|3 | 9 | sLsssssssssLsssssss |
14|4 | 18 | ssLssssssssLsssssss |
13|5 | 8 | ssLsssssssssLssssss |
12|6 | 17 | sssLssssssssLssssss |
11|7 | 7 | sssLsssssssssLsssss |
10|8 | 16 | ssssLssssssssLsssss |
9|9 | 6 | ssssLsssssssssLssss |
8|10 | 15 | sssssLssssssssLssss |
7|11 | 5 | sssssLsssssssssLsss |
6|12 | 14 | ssssssLssssssssLsss |
5|13 | 4 | ssssssLsssssssssLss |
4|14 | 13 | sssssssLssssssssLss |
3|15 | 3 | sssssssLsssssssssLs |
2|16 | 12 | ssssssssLssssssssLs |
1|17 | 2 | ssssssssLsssssssssL |
0|18 | 11 | sssssssssLssssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 100.1¢ |
Major 1-mosstep | M1ms | L | 100.1¢ to 951.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 200.2¢ |
Major 2-mosstep | M2ms | L + s | 200.2¢ to 951.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 300.3¢ |
Major 3-mosstep | M3ms | L + 2s | 300.3¢ to 951.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 400.4¢ |
Major 4-mosstep | M4ms | L + 3s | 400.4¢ to 951.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0¢ to 500.5¢ |
Major 5-mosstep | M5ms | L + 4s | 500.5¢ to 951.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0¢ to 600.6¢ |
Major 6-mosstep | M6ms | L + 5s | 600.6¢ to 951.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 7s | 0.0¢ to 700.7¢ |
Major 7-mosstep | M7ms | L + 6s | 700.7¢ to 951.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 8s | 0.0¢ to 800.8¢ |
Major 8-mosstep | M8ms | L + 7s | 800.8¢ to 951.0¢ | |
9-mosstep | Diminished 9-mosstep | d9ms | 9s | 0.0¢ to 900.9¢ |
Perfect 9-mosstep | P9ms | L + 8s | 900.9¢ to 951.0¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | L + 9s | 951.0¢ to 1001.0¢ |
Augmented 10-mosstep | A10ms | 2L + 8s | 1001.0¢ to 1902.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | L + 10s | 951.0¢ to 1101.1¢ |
Major 11-mosstep | M11ms | 2L + 9s | 1101.1¢ to 1902.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | L + 11s | 951.0¢ to 1201.2¢ |
Major 12-mosstep | M12ms | 2L + 10s | 1201.2¢ to 1902.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 951.0¢ to 1301.3¢ |
Major 13-mosstep | M13ms | 2L + 11s | 1301.3¢ to 1902.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 951.0¢ to 1401.4¢ |
Major 14-mosstep | M14ms | 2L + 12s | 1401.4¢ to 1902.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | L + 14s | 951.0¢ to 1501.5¢ |
Major 15-mosstep | M15ms | 2L + 13s | 1501.5¢ to 1902.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | L + 15s | 951.0¢ to 1601.6¢ |
Major 16-mosstep | M16ms | 2L + 14s | 1601.6¢ to 1902.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | L + 16s | 951.0¢ to 1701.7¢ |
Major 17-mosstep | M17ms | 2L + 15s | 1701.7¢ to 1902.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | L + 17s | 951.0¢ to 1801.9¢ |
Major 18-mosstep | M18ms | 2L + 16s | 1801.9¢ to 1902.0¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 2L + 17s | 1902.0¢ |
Scale tree
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
9\19 | 900.926
615.7895 |
100.103
68.421 |
800.823
547.368 |
L=1 s=1 | |||||||
55\116 | 901.789
616.379 |
114.773
78.448 |
98.377
67.241 |
803.412
549.138 |
L=7 s=6 | ||||||
46\97 | 901.958
616.495 |
117.647
80.412 |
98.039
67.01 |
803.919
549.485 |
L=6 s=5 | ||||||
83\175 | 902.07
616.571 |
119.5515
81.714 |
97.815
66.857 |
804.255
549.714 |
|||||||
37\78 | 902.209
616.667 |
121.92
83.333 |
97.536
66.667 |
804.673
550 |
L=5 s=4 | ||||||
102\215 | 902.323
616.744 |
123.848
84.651 |
97.309
66.518 |
805.013
550.226 |
|||||||
65\137 | 902.387
616.788 |
124.946
85.4015 |
97.18
66.423 |
805.207
550.365 |
|||||||
93\196 | 902.458
616.837 |
126.15
86.2245 |
97.0385
66.3265 |
805.42
550.51 |
|||||||
28\59 | 902.623
616.949 |
128.946
88.136 |
96.71
66.102 |
805.913
550.8475 |
L=4 s=3 | ||||||
103\217 | 902.771
617.051 |
131.4715
89.862 |
96.4125
65.899 |
806.359
551.152 |
|||||||
75\158 | 902.827
617.089 |
132.415
90.506 |
96.3015
65.823 |
806.521
551.266 |
|||||||
122\257 | 902.874
617.121 |
133.211
91.051 |
96.208
65.759 |
806.666
551.362 |
|||||||
47\99 | 902.948
617.172 |
134.482
91.919 |
96.058
65.6565 |
806.89
551.515 |
L=7 s=5 | ||||||
113\238 | 903.029
617.227 |
135.854
92.857 |
95.897
65.546 |
807.132
551.681 |
|||||||
66\139 | 903.0865
617.266 |
136.831
93.525 |
95.782
65.468 |
807.3045
551.798 |
|||||||
85\179 | 903.163
617.318 |
138.131
94.413 |
95.629
65.363 |
807.534
551.985 |
|||||||
19\40 | 903.429
617.5 |
142.647
97.5 |
95.098
65 |
808.331
552.5 |
L=3 s=2 | ||||||
86\181 | 903.6913
617.68 |
147.1125
100.5525 |
94.572
64.641 |
809.119
553.039 |
|||||||
67\141 | 903.766
617.7305 |
148.3795
101.418 |
94.423
64.539 |
809.343
553.1915 |
|||||||
115\242 | 903.822
617.769 |
149.327
102.066 |
94.312
64.463 |
809.51
553.406 |
|||||||
48\101 | 903.899
617.822 |
150.65
102.97 |
94.156
64.357 |
809.743
553.465 |
|||||||
125\263 | 903.971
617.871 |
151.867
103.802 |
94.013
64.259 |
809.958
553.612 |
Golden Trans-Arcturus[19] is near here | ||||||
77\162 | 904.016
617.901 |
152.626
104.321 |
93.924
64.1975 |
810.092
553.703 |
|||||||
106\223 | 904.068
617.937 |
153.521
104.933 |
93.818
64.126 |
810.25
553.811 |
|||||||
29\61 | 904.2081
618.033 |
155.898
106.557 |
93.539
63.934 |
810.669
554.098 |
L=5 s=3 | ||||||
97\204 | 904.361
618.137 |
158.496
108.333 |
93.233
63.7255 |
811.128
554.412 |
|||||||
68\143 | 904.426
618.182 |
159.605
109.091 |
93.103
63.636 |
811.324
554.5455 |
|||||||
107\225 | 904.485
618.222 |
160.6095
109.778 |
92.9845
63.556 |
811.5
554.667 |
|||||||
39\82 | 904.5884
618.293 |
162.362
110.976 |
92.778
63.415 |
811.81
554.878 |
L=7 s=4 | ||||||
88\185 | 904.714
618.378 |
164.493
112.432 |
92.5275
63.243 |
812.186
555.135 |
|||||||
49\103 | 904.8135
618.447 |
166.19
113.592 |
92.328
63.107 |
812.4855
555.34 |
|||||||
59\124 | 904.9625
618.548 |
168.722
115.323 |
92.03
62.903 |
812.9325
555.645 |
|||||||
10\21 | 905.693
619.047 |
181.139
123.8095 |
90.569
61.905 |
815.124
557.143 |
L=2 s=1 | ||||||
51\107 | 906.5393
619.626 |
195.528
133.645 |
88.876
60.748 |
817.663
558.8785 |
|||||||
41\86 | 906.746
619.767 |
199.042
136.0465 |
88.463
60.465 |
818.283
559.302 |
|||||||
72\151 | 906.8925
619.8675 |
201.532
137.7483 |
88.17
60.265 |
818.7225
559.603 |
|||||||
31\65 | 907.086
620 |
204.826
140 |
87.7825
60 |
819.304
560 |
L=7 s=3 | ||||||
83\174 | 907.254
620.115 |
207.685
141.954 |
87.446
59.78 |
819.808
560.335 |
|||||||
52\109 | 907.355
620.1835 |
209.3895
143.119 |
87.246
59.633 |
820.109
560.5505 |
|||||||
73\153 | 907.469
620.261 |
211.328
144.444 |
87.0175
59.477 |
820.451
560.794 |
|||||||
21\44 | 907.751
620.4545 |
216.131
147.727 |
86.4525
59.091 |
821.299
561.364 |
L=5 s=2 | ||||||
74\155 | 908.03
620.645 |
220.872
150.968 |
85.895
58.71 |
822.135
561.9355 |
|||||||
53\111 | 908.141
620.721 |
222.7515
152.252 |
85.674
58.559 |
822.467
562.162 |
|||||||
85\178 | 908.237
620.7865 |
224.388
153.371 |
85.481
58.427 |
822.756
562.36 |
|||||||
32\67 | 908.396
620.8955 |
227.099
155.224 |
85.162
58.209 |
823.234
562.687 |
|||||||
75\157 | 908.577
621.019 |
230.173
157.325 |
84.8005
57.962 |
823.777
563.057 |
|||||||
43\90 | 908.712
621.111 |
232.461
158.889 |
84.531
57.778 |
824.18
563.333 |
|||||||
54\113 | 908.899
621.239 |
235.64
161.062 |
84.157
57.522 |
824.741
563.717 |
|||||||
11\23 | 909.631
621.739 |
248.081
169.565 |
82.694
56.522 |
826.937
565.217 |
L=3 s=1 | ||||||
45\94 | 910.51
622.34 |
263.036
179.787 |
80.934
55.319 |
829.576
567.021 |
|||||||
34\71 | 910.795
622.535 |
267.881
183.098 |
80.364
54.93 |
830.431
567.605 |
|||||||
57\119 | 911.0205
622.689 |
271.708
185.714 |
79.914
54.622 |
831.1065
568.067 |
|||||||
23\48 | 911.353
622.917 |
277.368
189.583 |
79.248
54.167 |
832.105
568.75 |
L=7 s=2 | ||||||
58\121 | 911.681
623.1405 |
282.9355
193.388 |
78.593
53.719 |
833.088
569.4215 |
cube root of 3*phi is near here | ||||||
35\73 | 911.896
623.288 |
286.596
195.89 |
78.1625
53.425 |
833.734
569.763 |
|||||||
47\98 | 912.162
623.469 |
291.116
198.98 |
77.631
53.061 |
834.531
570.408 |
|||||||
12\25 | 912.938
624 |
304.313
208 |
76.078
52 |
836.86
572 |
L=4 s=1 | ||||||
37\77 | 913.926
624.675 |
321.109
219.4805 |
74.102
50.649 |
839.824
574.026 |
|||||||
25\52 | 914.401
625 |
329.1845
225 |
73.152
50 |
841.249
575 |
|||||||
38\79 | 914.864
625.3165 |
337.055
230.378 |
72.226
49.377 |
842.638
575.949 |
|||||||
13\27 | 915.756
625.926 |
352.214
240.741 |
70.443
48.148 |
845.313
577.778 |
L=5 s=1 | ||||||
27\56 | 917.014
626.786 |
373.598
255.357 |
67.927
46.429 |
849.087
580.357 |
|||||||
14\29 | 918.185
627.586 |
393.508
268.9655 |
65.585
44.828 |
852.601
582.862 |
L=6 s=1 | ||||||
15\31 | 920.301
629.032 |
429.474
293.548 |
61.353
41.9355 |
858.947
587.097 |
L=7 s=1 | ||||||
1/2 | 950.9775
650 |
0.00 | 950.9775
650 |
L=1 s=0 |