2L 17s (3/1-equivalent)

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 1L 16s⟨3/1⟩ ↑ 2L 16s⟨3/1⟩ 3L 16s⟨3/1⟩ ↗
← 1L 17s⟨3/1⟩ 2L 17s (3/1-equivalent) 3L 17s⟨3/1⟩ →
↙ 1L 18s⟨3/1⟩ ↓ 2L 18s⟨3/1⟩ 3L 18s⟨3/1⟩ ↘
┌╥┬┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┬┬┐
│║││││││││║││││││││││
│││││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LssssssssLsssssssss
sssssssssLssssssssL
Equave 3/1 (1902.0¢)
Period 3/1 (1902.0¢)
Generator size(edt)
Bright 9\19 to 1\2 (900.9¢ to 951.0¢)
Dark 1\2 to 10\19 (951.0¢ to 1001.0¢)
Related MOS scales
Parent 2L 15s⟨3/1⟩
Sister 17L 2s⟨3/1⟩
Daughters 19L 2s⟨3/1⟩, 2L 19s⟨3/1⟩
Neutralized 4L 15s⟨3/1⟩
2-Flought 21L 17s⟨3/1⟩, 2L 36s⟨3/1⟩
Equal tunings(edt)
Equalized (L:s = 1:1) 9\19 (900.9¢)
Supersoft (L:s = 4:3) 28\59 (902.6¢)
Soft (L:s = 3:2) 19\40 (903.4¢)
Semisoft (L:s = 5:3) 29\61 (904.2¢)
Basic (L:s = 2:1) 10\21 (905.7¢)
Semihard (L:s = 5:2) 21\44 (907.8¢)
Hard (L:s = 3:1) 11\23 (909.6¢)
Superhard (L:s = 4:1) 12\25 (912.9¢)
Collapsed (L:s = 1:0) 1\2 (951.0¢)

2L 17s⟨3/1⟩ is a 3/1-equivalent (tritave-equivalent) moment of symmetry scale containing 2 large steps and 17 small steps, repeating every interval of 3/1 (1902.0¢). Generators that produce this scale range from 900.9¢ to 951¢, or from 951¢ to 1001¢.

The generator for this scale far sharper than 5/3 (884¢). However, the accumulated sharpness of the generator leads to "ordinary" 8/5 and 5/3 intervals in three steps after factoring out tritaves.

Modes

Modes of 2L 17s⟨3/1⟩
UDP Cyclic
order
Step
pattern
18|0 1 LssssssssLsssssssss
17|1 10 LsssssssssLssssssss
16|2 19 sLssssssssLssssssss
15|3 9 sLsssssssssLsssssss
14|4 18 ssLssssssssLsssssss
13|5 8 ssLsssssssssLssssss
12|6 17 sssLssssssssLssssss
11|7 7 sssLsssssssssLsssss
10|8 16 ssssLssssssssLsssss
9|9 6 ssssLsssssssssLssss
8|10 15 sssssLssssssssLssss
7|11 5 sssssLsssssssssLsss
6|12 14 ssssssLssssssssLsss
5|13 4 ssssssLsssssssssLss
4|14 13 sssssssLssssssssLss
3|15 3 sssssssLsssssssssLs
2|16 12 ssssssssLssssssssLs
1|17 2 ssssssssLsssssssssL
0|18 11 sssssssssLssssssssL

Intervals

Intervals of 2L 17s⟨3/1⟩
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Minor 1-mosstep m1ms s 0.0¢ to 100.1¢
Major 1-mosstep M1ms L 100.1¢ to 951.0¢
2-mosstep Minor 2-mosstep m2ms 2s 0.0¢ to 200.2¢
Major 2-mosstep M2ms L + s 200.2¢ to 951.0¢
3-mosstep Minor 3-mosstep m3ms 3s 0.0¢ to 300.3¢
Major 3-mosstep M3ms L + 2s 300.3¢ to 951.0¢
4-mosstep Minor 4-mosstep m4ms 4s 0.0¢ to 400.4¢
Major 4-mosstep M4ms L + 3s 400.4¢ to 951.0¢
5-mosstep Minor 5-mosstep m5ms 5s 0.0¢ to 500.5¢
Major 5-mosstep M5ms L + 4s 500.5¢ to 951.0¢
6-mosstep Minor 6-mosstep m6ms 6s 0.0¢ to 600.6¢
Major 6-mosstep M6ms L + 5s 600.6¢ to 951.0¢
7-mosstep Minor 7-mosstep m7ms 7s 0.0¢ to 700.7¢
Major 7-mosstep M7ms L + 6s 700.7¢ to 951.0¢
8-mosstep Minor 8-mosstep m8ms 8s 0.0¢ to 800.8¢
Major 8-mosstep M8ms L + 7s 800.8¢ to 951.0¢
9-mosstep Diminished 9-mosstep d9ms 9s 0.0¢ to 900.9¢
Perfect 9-mosstep P9ms L + 8s 900.9¢ to 951.0¢
10-mosstep Perfect 10-mosstep P10ms L + 9s 951.0¢ to 1001.0¢
Augmented 10-mosstep A10ms 2L + 8s 1001.0¢ to 1902.0¢
11-mosstep Minor 11-mosstep m11ms L + 10s 951.0¢ to 1101.1¢
Major 11-mosstep M11ms 2L + 9s 1101.1¢ to 1902.0¢
12-mosstep Minor 12-mosstep m12ms L + 11s 951.0¢ to 1201.2¢
Major 12-mosstep M12ms 2L + 10s 1201.2¢ to 1902.0¢
13-mosstep Minor 13-mosstep m13ms L + 12s 951.0¢ to 1301.3¢
Major 13-mosstep M13ms 2L + 11s 1301.3¢ to 1902.0¢
14-mosstep Minor 14-mosstep m14ms L + 13s 951.0¢ to 1401.4¢
Major 14-mosstep M14ms 2L + 12s 1401.4¢ to 1902.0¢
15-mosstep Minor 15-mosstep m15ms L + 14s 951.0¢ to 1501.5¢
Major 15-mosstep M15ms 2L + 13s 1501.5¢ to 1902.0¢
16-mosstep Minor 16-mosstep m16ms L + 15s 951.0¢ to 1601.6¢
Major 16-mosstep M16ms 2L + 14s 1601.6¢ to 1902.0¢
17-mosstep Minor 17-mosstep m17ms L + 16s 951.0¢ to 1701.7¢
Major 17-mosstep M17ms 2L + 15s 1701.7¢ to 1902.0¢
18-mosstep Minor 18-mosstep m18ms L + 17s 951.0¢ to 1801.9¢
Major 18-mosstep M18ms 2L + 16s 1801.9¢ to 1902.0¢
19-mosstep Perfect 19-mosstep P19ms 2L + 17s 1902.0¢

Scale tree

Generator cents L s 3g Notes
9\19 900.926

615.7895

100.103

68.421

800.823

547.368

L=1 s=1
55\116 901.789

616.379

114.773

78.448

98.377

67.241

803.412

549.138

L=7 s=6
46\97 901.958

616.495

117.647

80.412

98.039

67.01

803.919

549.485

L=6 s=5
83\175 902.07

616.571

119.5515

81.714

97.815

66.857

804.255

549.714

37\78 902.209

616.667

121.92

83.333

97.536

66.667

804.673

550

L=5 s=4
102\215 902.323

616.744

123.848

84.651

97.309

66.518

805.013

550.226

65\137 902.387

616.788

124.946

85.4015

97.18

66.423

805.207

550.365

93\196 902.458

616.837

126.15

86.2245

97.0385

66.3265

805.42

550.51

28\59 902.623

616.949

128.946

88.136

96.71

66.102

805.913

550.8475

L=4 s=3
103\217 902.771

617.051

131.4715

89.862

96.4125

65.899

806.359

551.152

75\158 902.827

617.089

132.415

90.506

96.3015

65.823

806.521

551.266

122\257 902.874

617.121

133.211

91.051

96.208

65.759

806.666

551.362

47\99 902.948

617.172

134.482

91.919

96.058

65.6565

806.89

551.515

L=7 s=5
113\238 903.029

617.227

135.854

92.857

95.897

65.546

807.132

551.681

66\139 903.0865

617.266

136.831

93.525

95.782

65.468

807.3045

551.798

85\179 903.163

617.318

138.131

94.413

95.629

65.363

807.534

551.985

19\40 903.429

617.5

142.647

97.5

95.098

65

808.331

552.5

L=3 s=2
86\181 903.6913

617.68

147.1125

100.5525

94.572

64.641

809.119

553.039

67\141 903.766

617.7305

148.3795

101.418

94.423

64.539

809.343

553.1915

115\242 903.822

617.769

149.327

102.066

94.312

64.463

809.51

553.406

48\101 903.899

617.822

150.65

102.97

94.156

64.357

809.743

553.465

125\263 903.971

617.871

151.867

103.802

94.013

64.259

809.958

553.612

Golden Trans-Arcturus[19] is near here
77\162 904.016

617.901

152.626

104.321

93.924

64.1975

810.092

553.703

106\223 904.068

617.937

153.521

104.933

93.818

64.126

810.25

553.811

29\61 904.2081

618.033

155.898

106.557

93.539

63.934

810.669

554.098

L=5 s=3
97\204 904.361

618.137

158.496

108.333

93.233

63.7255

811.128

554.412

68\143 904.426

618.182

159.605

109.091

93.103

63.636

811.324

554.5455

107\225 904.485

618.222

160.6095

109.778

92.9845

63.556

811.5

554.667

39\82 904.5884

618.293

162.362

110.976

92.778

63.415

811.81

554.878

L=7 s=4
88\185 904.714

618.378

164.493

112.432

92.5275

63.243

812.186

555.135

49\103 904.8135

618.447

166.19

113.592

92.328

63.107

812.4855

555.34

59\124 904.9625

618.548

168.722

115.323

92.03

62.903

812.9325

555.645

10\21 905.693

619.047

181.139

123.8095

90.569

61.905

815.124

557.143

L=2 s=1
51\107 906.5393

619.626

195.528

133.645

88.876

60.748

817.663

558.8785

41\86 906.746

619.767

199.042

136.0465

88.463

60.465

818.283

559.302

72\151 906.8925

619.8675

201.532

137.7483

88.17

60.265

818.7225

559.603

31\65 907.086

620

204.826

140

87.7825

60

819.304

560

L=7 s=3
83\174 907.254

620.115

207.685

141.954

87.446

59.78

819.808

560.335

52\109 907.355

620.1835

209.3895

143.119

87.246

59.633

820.109

560.5505

73\153 907.469

620.261

211.328

144.444

87.0175

59.477

820.451

560.794

21\44 907.751

620.4545

216.131

147.727

86.4525

59.091

821.299

561.364

L=5 s=2
74\155 908.03

620.645

220.872

150.968

85.895

58.71

822.135

561.9355

53\111 908.141

620.721

222.7515

152.252

85.674

58.559

822.467

562.162

85\178 908.237

620.7865

224.388

153.371

85.481

58.427

822.756

562.36

32\67 908.396

620.8955

227.099

155.224

85.162

58.209

823.234

562.687

75\157 908.577

621.019

230.173

157.325

84.8005

57.962

823.777

563.057

43\90 908.712

621.111

232.461

158.889

84.531

57.778

824.18

563.333

54\113 908.899

621.239

235.64

161.062

84.157

57.522

824.741

563.717

11\23 909.631

621.739

248.081

169.565

82.694

56.522

826.937

565.217

L=3 s=1
45\94 910.51

622.34

263.036

179.787

80.934

55.319

829.576

567.021

34\71 910.795

622.535

267.881

183.098

80.364

54.93

830.431

567.605

57\119 911.0205

622.689

271.708

185.714

79.914

54.622

831.1065

568.067

23\48 911.353

622.917

277.368

189.583

79.248

54.167

832.105

568.75

L=7 s=2
58\121 911.681

623.1405

282.9355

193.388

78.593

53.719

833.088

569.4215

cube root of 3*phi is near here
35\73 911.896

623.288

286.596

195.89

78.1625

53.425

833.734

569.763

47\98 912.162

623.469

291.116

198.98

77.631

53.061

834.531

570.408

12\25 912.938

624

304.313

208

76.078

52

836.86

572

L=4 s=1
37\77 913.926

624.675

321.109

219.4805

74.102

50.649

839.824

574.026

25\52 914.401

625

329.1845

225

73.152

50

841.249

575

38\79 914.864

625.3165

337.055

230.378

72.226

49.377

842.638

575.949

13\27 915.756

625.926

352.214

240.741

70.443

48.148

845.313

577.778

L=5 s=1
27\56 917.014

626.786

373.598

255.357

67.927

46.429

849.087

580.357

14\29 918.185

627.586

393.508

268.9655

65.585

44.828

852.601

582.862

L=6 s=1
15\31 920.301

629.032

429.474

293.548

61.353

41.9355

858.947

587.097

L=7 s=1
1/2 950.9775

650

0.00 950.9775

650

L=1 s=0