82ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 41
Step size
17.8887¢
Octave
67\82ed7/3 (1198.54¢)
(semiconvergent)
Twelfth
106\82ed7/3 (1896.2¢) (→53\41ed7/3)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 81ed7/3 | 82ed7/3 | 83ed7/3 → |
(semiconvergent)
82 equal divisions of 7/3 (abbreviated 82ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 82 equal parts of about 17.9 ¢ each. Each step represents a frequency ratio of (7/3)1/82, or the 82nd root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.9 | |
2 | 35.8 | |
3 | 53.7 | 31/30, 32/31, 33/32, 34/33 |
4 | 71.6 | 24/23 |
5 | 89.4 | 20/19, 39/37 |
6 | 107.3 | 17/16, 33/31 |
7 | 125.2 | 14/13 |
8 | 143.1 | 38/35 |
9 | 161 | 34/31 |
10 | 178.9 | 31/28 |
11 | 196.8 | 37/33 |
12 | 214.7 | 17/15, 26/23 |
13 | 232.6 | 8/7 |
14 | 250.4 | 15/13, 37/32 |
15 | 268.3 | 7/6 |
16 | 286.2 | 13/11, 33/28 |
17 | 304.1 | 31/26, 37/31 |
18 | 322 | |
19 | 339.9 | 28/23, 39/32 |
20 | 357.8 | 16/13 |
21 | 375.7 | |
22 | 393.6 | |
23 | 411.4 | 19/15, 33/26 |
24 | 429.3 | |
25 | 447.2 | 22/17 |
26 | 465.1 | 17/13, 38/29 |
27 | 483 | 37/28 |
28 | 500.9 | 4/3 |
29 | 518.8 | 31/23 |
30 | 536.7 | 15/11 |
31 | 554.5 | 40/29 |
32 | 572.4 | 32/23, 39/28 |
33 | 590.3 | |
34 | 608.2 | 37/26 |
35 | 626.1 | 23/16, 33/23 |
36 | 644 | 29/20 |
37 | 661.9 | 22/15 |
38 | 679.8 | 34/23 |
39 | 697.7 | |
40 | 715.5 | |
41 | 733.4 | 26/17, 29/19 |
42 | 751.3 | 17/11, 37/24 |
43 | 769.2 | |
44 | 787.1 | |
45 | 805 | 35/22 |
46 | 822.9 | 37/23 |
47 | 840.8 | 13/8 |
48 | 858.7 | 23/14 |
49 | 876.5 | |
50 | 894.4 | |
51 | 912.3 | 22/13, 39/23 |
52 | 930.2 | 12/7 |
53 | 948.1 | 19/11 |
54 | 966 | 7/4 |
55 | 983.9 | 30/17 |
56 | 1001.8 | |
57 | 1019.7 | |
58 | 1037.5 | 20/11, 31/17 |
59 | 1055.4 | 35/19 |
60 | 1073.3 | 13/7 |
61 | 1091.2 | 15/8 |
62 | 1109.1 | 19/10 |
63 | 1127 | 23/12 |
64 | 1144.9 | 31/16 |
65 | 1162.8 | |
66 | 1180.7 | |
67 | 1198.5 | 2/1 |
68 | 1216.4 | |
69 | 1234.3 | |
70 | 1252.2 | 33/16, 35/17 |
71 | 1270.1 | |
72 | 1288 | 40/19 |
73 | 1305.9 | 17/8 |
74 | 1323.8 | |
75 | 1341.7 | 13/6 |
76 | 1359.5 | |
77 | 1377.4 | 31/14 |
78 | 1395.3 | 38/17 |
79 | 1413.2 | |
80 | 1431.1 | 16/7 |
81 | 1449 | 30/13, 37/16 |
82 | 1466.9 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.46 | -5.76 | -2.92 | +4.32 | -7.22 | -5.76 | -4.38 | +6.38 | +2.86 | -1.15 | -8.67 |
Relative (%) | -8.2 | -32.2 | -16.3 | +24.1 | -40.3 | -32.2 | -24.5 | +35.6 | +16.0 | -6.4 | -48.5 | |
Steps (reduced) |
67 (67) |
106 (24) |
134 (52) |
156 (74) |
173 (9) |
188 (24) |
201 (37) |
213 (49) |
223 (59) |
232 (68) |
240 (76) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.14 | -7.22 | -1.44 | -5.84 | -3.46 | +4.92 | +0.76 | +1.40 | +6.38 | -2.61 | -8.01 |
Relative (%) | -23.1 | -40.3 | -8.0 | -32.6 | -19.3 | +27.5 | +4.2 | +7.8 | +35.6 | -14.6 | -44.8 | |
Steps (reduced) |
248 (2) |
255 (9) |
262 (16) |
268 (22) |
274 (28) |
280 (34) |
285 (39) |
290 (44) |
295 (49) |
299 (53) |
303 (57) |