81ed7/3
Jump to navigation
Jump to search
Prime factorization
34
Step size
18.1095¢
Octave
66\81ed7/3 (1195.23¢) (→22\27ed7/3)
Twelfth
105\81ed7/3 (1901.5¢) (→35\27ed7/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 80ed7/3 | 81ed7/3 | 82ed7/3 → |
81 equal divisions of 7/3 (abbreviated 81ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 81 equal parts of about 18.1 ¢ each. Each step represents a frequency ratio of (7/3)1/81, or the 81st root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.11 | |
2 | 36.219 | |
3 | 54.329 | 31/30, 34/33 |
4 | 72.438 | |
5 | 90.548 | 19/18, 20/19, 39/37 |
6 | 108.657 | 33/31 |
7 | 126.767 | 14/13, 29/27 |
8 | 144.876 | 25/23, 37/34 |
9 | 162.986 | 11/10, 34/31 |
10 | 181.095 | 10/9 |
11 | 199.205 | 37/33 |
12 | 217.314 | 17/15 |
13 | 235.424 | 39/34 |
14 | 253.533 | 22/19 |
15 | 271.643 | |
16 | 289.752 | 13/11 |
17 | 307.862 | 37/31 |
18 | 325.971 | 35/29 |
19 | 344.081 | |
20 | 362.19 | 37/30 |
21 | 380.3 | |
22 | 398.409 | 29/23, 34/27, 39/31 |
23 | 416.519 | 14/11 |
24 | 434.628 | 9/7 |
25 | 452.738 | 13/10 |
26 | 470.847 | |
27 | 488.957 | |
28 | 507.066 | |
29 | 525.176 | 23/17 |
30 | 543.286 | 26/19, 37/27 |
31 | 561.395 | 18/13, 29/21 |
32 | 579.505 | 7/5 |
33 | 597.614 | |
34 | 615.724 | 10/7 |
35 | 633.833 | 13/9 |
36 | 651.943 | |
37 | 670.052 | 25/17, 28/19 |
38 | 688.162 | |
39 | 706.271 | |
40 | 724.381 | 35/23 |
41 | 742.49 | 23/15 |
42 | 760.6 | 31/20 |
43 | 778.709 | |
44 | 796.819 | 19/12 |
45 | 814.928 | |
46 | 833.038 | 21/13, 34/21 |
47 | 851.147 | 18/11 |
48 | 869.257 | 33/20 |
49 | 887.366 | 5/3 |
50 | 905.476 | |
51 | 923.585 | 29/17 |
52 | 941.695 | 31/18 |
53 | 959.804 | |
54 | 977.914 | 37/21 |
55 | 996.023 | |
56 | 1014.133 | |
57 | 1032.242 | 20/11 |
58 | 1050.352 | 11/6 |
59 | 1068.462 | |
60 | 1086.571 | |
61 | 1104.681 | 36/19 |
62 | 1122.79 | |
63 | 1140.9 | 29/15 |
64 | 1159.009 | 39/20 |
65 | 1177.119 | |
66 | 1195.228 | |
67 | 1213.338 | |
68 | 1231.447 | |
69 | 1249.557 | 35/17, 37/18 |
70 | 1267.666 | 27/13 |
71 | 1285.776 | 21/10, 40/19 |
72 | 1303.885 | |
73 | 1321.995 | 15/7 |
74 | 1340.104 | 13/6 |
75 | 1358.214 | |
76 | 1376.323 | 31/14 |
77 | 1394.433 | |
78 | 1412.542 | |
79 | 1430.652 | |
80 | 1448.761 | 30/13 |
81 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.77 | -0.46 | +8.57 | +2.55 | -5.23 | -0.46 | +3.79 | -0.91 | -2.22 | -4.24 | +8.11 |
Relative (%) | -26.3 | -2.5 | +47.3 | +14.1 | -28.9 | -2.5 | +21.0 | -5.0 | -12.3 | -23.4 | +44.8 | |
Steps (reduced) |
66 (66) |
105 (24) |
133 (52) |
154 (73) |
171 (9) |
186 (24) |
199 (37) |
210 (48) |
220 (58) |
229 (67) |
238 (76) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.70 | -5.23 | +2.10 | -0.98 | +2.72 | -5.68 | -8.74 | -6.99 | -0.91 | -9.01 | +4.58 |
Relative (%) | -20.4 | -28.9 | +11.6 | -5.4 | +15.0 | -31.4 | -48.3 | -38.6 | -5.0 | -49.8 | +25.3 | |
Steps (reduced) |
245 (2) |
252 (9) |
259 (16) |
265 (22) |
271 (28) |
276 (33) |
281 (38) |
286 (43) |
291 (48) |
295 (52) |
300 (57) |