83ed7/3
Jump to navigation
Jump to search
Prime factorization
83 (prime)
Step size
17.6731¢
Octave
68\83ed7/3 (1201.77¢)
Twelfth
108\83ed7/3 (1908.7¢)
Consistency limit
8
Distinct consistency limit
8
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 82ed7/3 | 83ed7/3 | 84ed7/3 → |
83 equal divisions of 7/3 (abbreviated 83ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 83 equal parts of about 17.7 ¢ each. Each step represents a frequency ratio of (7/3)1/83, or the 83rd root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.673 | |
2 | 35.346 | |
3 | 53.019 | 33/32, 34/33, 35/34 |
4 | 70.693 | 25/24 |
5 | 88.366 | 39/37 |
6 | 106.039 | 17/16 |
7 | 123.712 | |
8 | 141.385 | |
9 | 159.058 | |
10 | 176.731 | |
11 | 194.405 | 28/25 |
12 | 212.078 | 26/23 |
13 | 229.751 | 8/7 |
14 | 247.424 | |
15 | 265.097 | 7/6 |
16 | 282.77 | 20/17, 33/28 |
17 | 300.443 | 25/21 |
18 | 318.117 | 6/5 |
19 | 335.79 | 17/14, 40/33 |
20 | 353.463 | 38/31 |
21 | 371.136 | |
22 | 388.809 | 5/4 |
23 | 406.482 | |
24 | 424.155 | 37/29 |
25 | 441.829 | |
26 | 459.502 | |
27 | 477.175 | 29/22 |
28 | 494.848 | |
29 | 512.521 | 39/29 |
30 | 530.194 | 34/25 |
31 | 547.867 | |
32 | 565.541 | |
33 | 583.214 | 7/5 |
34 | 600.887 | 17/12 |
35 | 618.56 | 10/7 |
36 | 636.233 | |
37 | 653.906 | 19/13, 35/24 |
38 | 671.579 | |
39 | 689.253 | |
40 | 706.926 | |
41 | 724.599 | |
42 | 742.272 | |
43 | 759.945 | |
44 | 777.618 | |
45 | 795.291 | |
46 | 812.965 | 8/5 |
47 | 830.638 | |
48 | 848.311 | 31/19 |
49 | 865.984 | 28/17, 33/20 |
50 | 883.657 | 5/3 |
51 | 901.33 | 37/22 |
52 | 919.003 | 17/10 |
53 | 936.677 | |
54 | 954.35 | |
55 | 972.023 | |
56 | 989.696 | 23/13, 39/22 |
57 | 1007.369 | |
58 | 1025.042 | |
59 | 1042.715 | |
60 | 1060.389 | |
61 | 1078.062 | 28/15 |
62 | 1095.735 | 32/17 |
63 | 1113.408 | 40/21 |
64 | 1131.081 | |
65 | 1148.754 | 33/17, 35/18 |
66 | 1166.427 | |
67 | 1184.101 | |
68 | 1201.774 | 2/1 |
69 | 1219.447 | |
70 | 1237.12 | |
71 | 1254.793 | 33/16 |
72 | 1272.466 | 25/12 |
73 | 1290.139 | |
74 | 1307.813 | 17/8 |
75 | 1325.486 | |
76 | 1343.159 | |
77 | 1360.832 | |
78 | 1378.505 | |
79 | 1396.178 | |
80 | 1413.851 | 34/15 |
81 | 1431.525 | 16/7 |
82 | 1449.198 | 37/16 |
83 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.77 | +6.74 | +3.55 | +6.04 | +8.52 | +6.74 | +5.32 | -4.18 | +7.82 | +1.87 | -7.38 |
Relative (%) | +10.0 | +38.2 | +20.1 | +34.2 | +48.2 | +38.2 | +30.1 | -23.7 | +44.2 | +10.6 | -41.8 | |
Steps (reduced) |
68 (68) |
108 (25) |
136 (53) |
158 (75) |
176 (10) |
191 (25) |
204 (38) |
215 (49) |
226 (60) |
235 (69) |
243 (77) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.57 | +8.52 | -4.89 | +7.10 | +8.18 | -2.41 | -7.65 | -8.08 | -4.18 | +3.64 | -2.62 |
Relative (%) | -25.9 | +48.2 | -27.6 | +40.1 | +46.3 | -13.6 | -43.3 | -45.7 | -23.7 | +20.6 | -14.8 | |
Steps (reduced) |
251 (2) |
259 (10) |
265 (16) |
272 (23) |
278 (29) |
283 (34) |
288 (39) |
293 (44) |
298 (49) |
303 (54) |
307 (58) |