39ed15/8

From Xenharmonic Wiki
Jump to navigation Jump to search
← 38ed15/8 39ed15/8 40ed15/8 →
Prime factorization 3 × 13
Step size 27.9043 ¢ 
Octave 43\39ed15/8 (1199.89 ¢)
(convergent)
Twelfth 68\39ed15/8 (1897.49 ¢)
(semiconvergent)
Consistency limit 8
Distinct consistency limit 6

Division of the just major seventh into 39 equal parts (39ED15/8) is almost identical to 43 EDO, but with the 15/8 rather than the 2/1 being just. The octave is about 0.11 cents compressed and the step size is about 44.35 cents.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 27.9
2 55.8 29/28
3 83.7 20/19, 21/20, 22/21, 23/22
4 111.6 16/15, 17/16
5 139.5 13/12, 25/23
6 167.4 11/10, 21/19
7 195.3 19/17, 28/25, 29/26
8 223.2 17/15, 25/22
9 251.1 15/13, 22/19, 29/25
10 279 20/17
11 306.9 25/21
12 334.9 17/14, 23/19, 28/23, 29/24
13 362.8 16/13, 21/17, 26/21
14 390.7 5/4
15 418.6 14/11
16 446.5 22/17
17 474.4 21/16, 25/19, 29/22
18 502.3 4/3
19 530.2 15/11, 19/14, 23/17
20 558.1 11/8, 18/13, 29/21
21 586 7/5
22 613.9 10/7
23 641.8 13/9, 16/11, 29/20
24 669.7 22/15, 25/17, 28/19
25 697.6 3/2
26 725.5 29/19
27 753.4 17/11
28 781.3 11/7
29 809.2 8/5
30 837.1 13/8, 21/13
31 865 23/14, 28/17
32 892.9
33 920.8 17/10, 29/17
34 948.7 19/11, 26/15
35 976.7
36 1004.6 25/14
37 1032.5 20/11, 29/16
38 1060.4 24/13
39 1088.3 15/8

Harmonics

Approximation of harmonics in 39ed15/8
Harmonic 2 3 4 5 6 7 8 9
Error Absolute (¢) -0.11 -4.46 -0.23 +4.12 -4.57 +7.60 -0.34 -8.92
Relative (%) -0.4 -16.0 -0.8 +14.8 -16.4 +27.2 -1.2 -32.0
Steps
(reduced)
43
(4)
68
(29)
86
(8)
100
(22)
111
(33)
121
(4)
129
(12)
136
(19)
Approximation of harmonics in 39ed15/8
Harmonic 10 11 12 13 14 15 16 17
Error Absolute (¢) +4.00 +6.43 -4.69 -3.74 +7.48 -0.34 -0.46 +6.21
Relative (%) +14.4 +23.0 -16.8 -13.4 +26.8 -1.2 -1.6 +22.2
Steps
(reduced)
143
(26)
149
(32)
154
(37)
159
(3)
164
(8)
168
(12)
172
(16)
176
(20)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.