29ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 28ed7/429ed7/430ed7/4 →
Prime factorization 29 (prime)
Step size 33.4078¢ 
Octave 36\29ed7/4 (1202.68¢)
Twelfth 57\29ed7/4 (1904.24¢)
Consistency limit 4
Distinct consistency limit 3

Division of the septimal subminor seventh into 29 equal parts (29ED7/4) is very nearly identical to 36edo, but with the 7/4 rather than the 2/1 being just. The octave is stretched by about 2.68 cents and the step size is about 33.41 cents.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 33.408
2 66.816 23/22, 27/26
3 100.223 17/16, 18/17, 19/18
4 133.631 13/12, 14/13
5 167.039 11/10, 21/19
6 200.447 9/8, 19/17
7 233.855 8/7, 23/20
8 267.262 7/6
9 300.67 19/16
10 334.078 17/14
11 367.486 16/13, 21/17, 26/21
12 400.893 24/19
13 434.301 9/7
14 467.709 17/13, 21/16
15 501.117 4/3
16 534.525 15/11, 19/14, 26/19
17 567.932 18/13
18 601.34 17/12, 24/17, 27/19
19 634.748 13/9
20 668.156 22/15
21 701.564 3/2
22 734.971 23/15, 26/17
23 768.379 14/9
24 801.787 19/12, 27/17
25 835.195 13/8, 21/13
26 868.603
27 902.01 22/13, 27/16
28 935.418 12/7
29 968.826 7/4

Harmonics

Approximation of harmonics in 29ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.7 +2.3 +5.4 -13.5 +5.0 +5.4 +8.0 +4.6 -10.8 -8.8 +7.6
Relative (%) +8.0 +6.9 +16.0 -40.3 +14.9 +16.0 +24.1 +13.7 -32.3 -26.2 +22.9
Steps
(reduced)
36
(7)
57
(28)
72
(14)
83
(25)
93
(6)
101
(14)
108
(21)
114
(27)
119
(3)
124
(8)
129
(13)
Approximation of harmonics in 29ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.7 +8.0 -11.2 +10.7 +6.0 +7.3 +13.9 -8.1 +7.6 -6.1 -16.2
Relative (%) +8.1 +24.1 -33.5 +32.1 +17.9 +21.7 +41.5 -24.3 +22.9 -18.2 -48.5
Steps
(reduced)
133
(17)
137
(21)
140
(24)
144
(28)
147
(2)
150
(5)
153
(8)
155
(10)
158
(13)
160
(15)
162
(17)