30ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 29ed7/430ed7/431ed7/4 →
Prime factorization 2 × 3 × 5
Step size 32.2942¢ 
Octave 37\30ed7/4 (1194.89¢)
Twelfth 59\30ed7/4 (1905.36¢)
Consistency limit 6
Distinct consistency limit 3

30 equal divisions of 7/4 (abbreviated 30ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 30 equal parts of about 32.3 ¢ each. Each step represents a frequency ratio of (7/4)1/30, or the 30th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 32.294
2 64.588 24/23, 25/24, 27/26
3 96.883 18/17, 19/18
4 129.177 15/14
5 161.471 23/21
6 193.765 19/17
7 226.059 8/7, 17/15
8 258.354 7/6, 22/19
9 290.648 13/11
10 322.942 6/5, 23/19
11 355.236 11/9, 27/22
12 387.53 5/4
13 419.825 23/18
14 452.119 22/17
15 484.413
16 516.707 23/17
17 549.001 26/19
18 581.296 7/5
19 613.59 10/7, 27/19
20 645.884 13/9
21 678.178
22 710.472 3/2
23 742.767 23/15, 26/17
24 775.061 25/16
25 807.355 8/5, 27/17
26 839.649
27 871.943
28 904.238 22/13
29 936.532 12/7, 19/11
30 968.826 7/4

Harmonics

Approximation of harmonics in 30ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.1 +3.4 -10.2 -9.0 -1.7 -10.2 -15.3 +6.8 -14.1 +14.6 -6.8
Relative (%) -15.8 +10.5 -31.7 -27.9 -5.3 -31.7 -47.5 +21.1 -43.7 +45.3 -21.1
Steps
(reduced)
37
(7)
59
(29)
74
(14)
86
(26)
96
(6)
104
(14)
111
(21)
118
(28)
123
(3)
129
(9)
133
(13)
Approximation of harmonics in 30ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +16.1 -15.3 -5.6 +11.8 +3.8 +1.7 +5.0 +13.1 -6.8 +9.5 -2.8
Relative (%) +49.8 -47.5 -17.4 +36.6 +11.7 +5.2 +15.4 +40.4 -21.1 +29.5 -8.8
Steps
(reduced)
138
(18)
141
(21)
145
(25)
149
(29)
152
(2)
155
(5)
158
(8)
161
(11)
163
(13)
166
(16)
168
(18)