26ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 25ed7/426ed7/427ed7/4 →
Prime factorization 2 × 13
Step size 37.2625¢ 
Octave 32\26ed7/4 (1192.4¢) (→16\13ed7/4)
Twelfth 51\26ed7/4 (1900.39¢)
(semiconvergent)
Consistency limit 4
Distinct consistency limit 3

26 equal divisions of 7/4 (abbreviated 26ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 26 equal parts of about 37.3 ¢ each. Each step represents a frequency ratio of (7/4)1/26, or the 26th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 37.263
2 74.525 21/20, 22/21
3 111.788
4 149.05 12/11, 13/12, 25/23
5 186.313 10/9, 19/17
6 223.575 8/7, 17/15
7 260.838 7/6
8 298.1 13/11
9 335.363 23/19
10 372.625 26/21
11 409.888 14/11, 19/15
12 447.15 13/10
13 484.413 25/19
14 521.675 23/17
15 558.938 11/8, 18/13
16 596.201
17 633.463 13/9
18 670.726 25/17
19 707.988 3/2
20 745.251 20/13, 23/15
21 782.513 11/7
22 819.776 21/13
23 857.038 18/11
24 894.301 5/3
25 931.563 12/7
26 968.826 7/4

Harmonics

Approximation of harmonics in 26ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -7.6 -1.6 -15.2 +8.4 -9.2 -15.2 +14.5 -3.1 +0.8 -15.2 -16.8
Relative (%) -20.4 -4.2 -40.8 +22.5 -24.6 -40.8 +38.8 -8.4 +2.1 -40.7 -45.0
Steps
(reduced)
32
(6)
51
(25)
64
(12)
75
(23)
83
(5)
90
(12)
97
(19)
102
(24)
107
(3)
111
(7)
115
(11)
Approximation of harmonics in 26ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -6.3 +14.5 +6.8 +6.9 +13.7 -10.7 +7.5 -6.8 -16.8 +14.5 +12.1
Relative (%) -16.9 +38.8 +18.3 +18.4 +36.8 -28.8 +20.0 -18.3 -45.0 +38.9 +32.4
Steps
(reduced)
119
(15)
123
(19)
126
(22)
129
(25)
132
(2)
134
(4)
137
(7)
139
(9)
141
(11)
144
(14)
146
(16)