13ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 12ed7/4 13ed7/4 14ed7/4 →
Prime factorization 13 (prime)
Step size 74.5251¢ 
Octave 16\13ed7/4 (1192.4¢)
(semiconvergent)
Twelfth 26\13ed7/4 (1937.65¢) (→2\1ed7/4)
Consistency limit 2
Distinct consistency limit 2

13 equal divisions of 7/4 (abbreviated 13ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 13 equal parts of about 74.5 ¢ each. Each step represents a frequency ratio of (7/4)1/13, or the 13th root of 7/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 74.5 20/19, 22/21, 23/22
2 149.1 12/11, 13/12, 23/21
3 223.6 8/7, 15/13, 17/15
4 298.1 13/11, 19/16
5 372.6 5/4, 21/17
6 447.2 17/13, 22/17
7 521.7 15/11, 19/14, 23/17
8 596.2 7/5, 10/7, 17/12
9 670.7 22/15
10 745.3 17/11, 23/15
11 819.8 8/5, 21/13
12 894.3 22/13
13 968.8 7/4, 23/13

Harmonics

Approximation of harmonics in 13ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -7.6 +35.7 -15.2 -28.9 +28.1 -15.2 -22.8 -3.1 -36.5 +22.1 +20.5
Relative (%) -10.2 +47.9 -20.4 -38.8 +37.7 -20.4 -30.6 -4.2 -49.0 +29.6 +27.5
Steps
(reduced)
16
(3)
26
(0)
32
(6)
37
(11)
42
(3)
45
(6)
48
(9)
51
(12)
53
(1)
56
(4)
58
(6)
Approximation of harmonics in 13ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +31.0 -22.8 +6.8 -30.4 +13.7 -10.7 -29.8 +30.4 +20.5 +14.5 +12.1
Relative (%) +41.6 -30.6 +9.1 -40.8 +18.4 -14.4 -40.0 +40.8 +27.5 +19.4 +16.2
Steps
(reduced)
60
(8)
61
(9)
63
(11)
64
(12)
66
(1)
67
(2)
68
(3)
70
(5)
71
(6)
72
(7)
73
(8)