12ed7/4
Jump to navigation
Jump to search
Prime factorization
22 × 3
Step size
80.7355¢
Octave
15\12ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth
24\12ed7/4 (1937.65¢) (→2\1ed7/4)
Consistency limit
5
Distinct consistency limit
2
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 11ed7/4 | 12ed7/4 | 13ed7/4 → |
12 equal divisions of 7/4 (abbreviated 12ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 12 equal parts of about 80.7 ¢ each. Each step represents a frequency ratio of (7/4)1/12, or the 12th root of 7/4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 80.7 | 17/16, 21/20, 23/22 |
2 | 161.5 | 10/9 |
3 | 242.2 | 7/6, 8/7, 22/19 |
4 | 322.9 | 6/5, 17/14, 23/19 |
5 | 403.7 | 5/4 |
6 | 484.4 | 4/3, 17/13, 21/16 |
7 | 565.1 | 7/5 |
8 | 645.9 | 10/7, 19/13 |
9 | 726.6 | 3/2 |
10 | 807.4 | 8/5 |
11 | 888.1 | 5/3, 22/13 |
12 | 968.8 | 7/4, 16/9, 19/11, 23/13 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.0 | +35.7 | +22.1 | +39.4 | -34.0 | +22.1 | +33.1 | -9.3 | -30.3 | -33.8 | -23.0 |
Relative (%) | +13.7 | +44.2 | +27.3 | +48.8 | -42.1 | +27.3 | +41.0 | -11.6 | -37.5 | -41.9 | -28.5 | |
Steps (reduced) |
15 (3) |
24 (0) |
30 (6) |
35 (11) |
38 (2) |
42 (6) |
45 (9) |
47 (11) |
49 (1) |
51 (3) |
53 (5) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.1 | +33.1 | -5.6 | -36.6 | +19.9 | +1.7 | -11.2 | -19.2 | -23.0 | -22.8 | -19.0 |
Relative (%) | -0.1 | +41.0 | -6.9 | -45.3 | +24.7 | +2.1 | -13.8 | -23.8 | -28.5 | -28.2 | -23.5 | |
Steps (reduced) |
55 (7) |
57 (9) |
58 (10) |
59 (11) |
61 (1) |
62 (2) |
63 (3) |
64 (4) |
65 (5) |
66 (6) |
67 (7) |