12ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 11ed7/4 12ed7/4 13ed7/4 →
Prime factorization 22 × 3
Step size 80.7355¢ 
Octave 15\12ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth 24\12ed7/4 (1937.65¢) (→2\1ed7/4)
Consistency limit 5
Distinct consistency limit 2
Special properties

12 equal divisions of 7/4 (abbreviated 12ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 12 equal parts of about 80.7 ¢ each. Each step represents a frequency ratio of (7/4)1/12, or the 12th root of 7/4.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 80.7 17/16, 21/20, 23/22
2 161.5 10/9
3 242.2 7/6, 8/7, 22/19
4 322.9 6/5, 17/14, 23/19
5 403.7 5/4
6 484.4 4/3, 17/13, 21/16
7 565.1 7/5
8 645.9 10/7, 19/13
9 726.6 3/2
10 807.4 8/5
11 888.1 5/3, 22/13
12 968.8 7/4, 16/9, 19/11, 23/13

Harmonics

Approximation of harmonics in 12ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.0 +35.7 +22.1 +39.4 -34.0 +22.1 +33.1 -9.3 -30.3 -33.8 -23.0
Relative (%) +13.7 +44.2 +27.3 +48.8 -42.1 +27.3 +41.0 -11.6 -37.5 -41.9 -28.5
Steps
(reduced)
15
(3)
24
(0)
30
(6)
35
(11)
38
(2)
42
(6)
45
(9)
47
(11)
49
(1)
51
(3)
53
(5)
Approximation of harmonics in 12ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -0.1 +33.1 -5.6 -36.6 +19.9 +1.7 -11.2 -19.2 -23.0 -22.8 -19.0
Relative (%) -0.1 +41.0 -6.9 -45.3 +24.7 +2.1 -13.8 -23.8 -28.5 -28.2 -23.5
Steps
(reduced)
55
(7)
57
(9)
58
(10)
59
(11)
61
(1)
62
(2)
63
(3)
64
(4)
65
(5)
66
(6)
67
(7)