25ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 24ed7/425ed7/426ed7/4 →
Prime factorization 52
Step size 38.753¢ 
Octave 31\25ed7/4 (1201.34¢)
(semiconvergent)
Twelfth 49\25ed7/4 (1898.9¢)
(semiconvergent)
Consistency limit 12
Distinct consistency limit 3

25 equal divisions of 7/4 (abbreviated 25ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 25 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of (7/4)1/25, or the 25th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 38.753
2 77.506 20/19, 21/20, 22/21, 23/22, 24/23, 25/24, 26/25
3 116.259 14/13, 15/14, 16/15, 17/16
4 155.012 11/10, 12/11, 23/21, 25/23
5 193.765 9/8, 10/9, 19/17
6 232.518 8/7, 23/20, 25/22
7 271.271 7/6, 20/17
8 310.024 6/5, 25/21
9 348.777 11/9, 16/13
10 387.53 5/4
11 426.283 9/7, 14/11, 23/18
12 465.036 13/10, 17/13, 21/16, 25/19
13 503.789 4/3
14 542.543 11/8, 15/11, 26/19
15 581.296 7/5
16 620.049 10/7, 23/16
17 658.802 16/11, 19/13, 22/15, 25/17
18 697.555 3/2
19 736.308 20/13, 23/15, 26/17
20 775.061 11/7, 14/9, 25/16
21 813.814 8/5
22 852.567 13/8, 18/11, 23/14
23 891.32 5/3
24 930.073 12/7, 17/10
25 968.826 7/4

Harmonics

Approximation of harmonics in 25ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.3 -3.1 +2.7 +3.9 -1.7 +2.7 +4.0 -6.1 +5.2 -4.7 -0.4
Relative (%) +3.5 -7.9 +6.9 +10.1 -4.4 +6.9 +10.4 -15.8 +13.5 -12.2 -0.9
Steps
(reduced)
31
(6)
49
(24)
62
(12)
72
(22)
80
(5)
87
(12)
93
(18)
98
(23)
103
(3)
107
(7)
111
(11)
Approximation of harmonics in 25ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +16.1 +4.0 +0.8 +5.4 +16.7 -4.8 +17.9 +6.6 -0.4 -3.4 -2.8
Relative (%) +41.5 +10.4 +2.2 +13.9 +43.0 -12.3 +46.2 +17.0 -0.9 -8.8 -7.4
Steps
(reduced)
115
(15)
118
(18)
121
(21)
124
(24)
127
(2)
129
(4)
132
(7)
134
(9)
136
(11)
138
(13)
140
(15)