24ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 23ed7/424ed7/425ed7/4 →
Prime factorization 23 × 3
Step size 40.3677¢ 
Octave 30\24ed7/4 (1211.03¢) (→5\4ed7/4)
Twelfth 47\24ed7/4 (1897.28¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 3
Special properties

24 equal divisions of 7/4 (abbreviated 24ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 24 equal parts of about 40.4 ¢ each. Each step represents a frequency ratio of (7/4)1/24, or the 24th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 40.368
2 80.735 19/18, 26/25
3 121.103 14/13, 15/14
4 161.471 11/10, 12/11, 21/19, 23/21
5 201.839
6 242.206 15/13
7 282.574 13/11, 20/17
8 322.942 6/5, 23/19
9 363.31
10 403.677 19/15
11 444.045 9/7, 13/10, 22/17
12 484.413 25/19
13 524.781 15/11, 19/14
14 565.148 18/13, 25/18
15 605.516 17/12, 24/17
16 645.884 13/9, 19/13
17 686.252
18 726.619 26/17
19 766.987 14/9
20 807.355
21 847.723 18/11, 23/14
22 888.09 5/3
23 928.458 17/10
24 968.826

Harmonics

Approximation of harmonics in 24ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +11.0 -4.7 -18.3 -0.9 +6.4 -18.3 -7.3 -9.3 +10.1 +6.6 +17.4
Relative (%) +27.3 -11.6 -45.3 -2.3 +15.8 -45.3 -18.0 -23.1 +25.0 +16.3 +43.1
Steps
(reduced)
30
(6)
47
(23)
59
(11)
69
(21)
77
(5)
83
(11)
89
(17)
94
(22)
99
(3)
103
(7)
107
(11)
Approximation of harmonics in 24ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -0.1 -7.3 -5.6 +3.8 +19.9 +1.7 -11.2 -19.2 +17.4 +17.6 -19.0
Relative (%) -0.2 -18.0 -13.9 +9.3 +49.3 +4.2 -27.7 -47.7 +43.1 +43.6 -47.1
Steps
(reduced)
110
(14)
113
(17)
116
(20)
119
(23)
122
(2)
124
(4)
126
(6)
128
(8)
131
(11)
133
(13)
134
(14)