23ed7/4
Jump to navigation
Jump to search
Prime factorization
23 (prime)
Step size
42.1229¢
Octave
28\23ed7/4 (1179.44¢)
Twelfth
45\23ed7/4 (1895.53¢)
(semiconvergent)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 22ed7/4 | 23ed7/4 | 24ed7/4 → |
(semiconvergent)
23 equal divisions of 7/4 (abbreviated 23ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 23 equal parts of about 42.1 ¢ each. Each step represents a frequency ratio of (7/4)1/23, or the 23rd root of 7/4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 42.123 | |
2 | 84.246 | 22/21, 23/22 |
3 | 126.369 | 14/13, 15/14 |
4 | 168.491 | 21/19, 23/21 |
5 | 210.614 | 17/15, 25/22 |
6 | 252.737 | 15/13, 22/19 |
7 | 294.86 | 25/21 |
8 | 336.983 | 17/14, 23/19 |
9 | 379.106 | 21/17 |
10 | 421.229 | 19/15 |
11 | 463.352 | 13/10, 17/13, 25/19 |
12 | 505.474 | |
13 | 547.597 | |
14 | 589.72 | 7/5 |
15 | 631.843 | 13/9 |
16 | 673.966 | 22/15, 25/17 |
17 | 716.089 | |
18 | 758.212 | 14/9 |
19 | 800.334 | |
20 | 842.457 | 21/13 |
21 | 884.58 | 5/3 |
22 | 926.703 | 17/10 |
23 | 968.826 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.6 | -6.4 | +1.0 | -6.2 | +15.1 | +1.0 | -19.6 | -12.9 | +15.4 | +18.8 | -5.4 |
Relative (%) | -48.8 | -15.3 | +2.4 | -14.7 | +35.9 | +2.4 | -46.4 | -30.5 | +36.5 | +44.7 | -12.9 | |
Steps (reduced) |
28 (5) |
45 (22) |
57 (11) |
66 (20) |
74 (5) |
80 (11) |
85 (16) |
90 (21) |
95 (3) |
99 (7) |
102 (10) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -17.6 | -19.6 | -12.6 | +2.0 | -18.7 | +8.7 | -0.6 | -5.2 | -5.4 | -1.7 | +5.6 |
Relative (%) | -41.8 | -46.4 | -30.0 | +4.8 | -44.4 | +20.7 | -1.5 | -12.3 | -12.9 | -4.1 | +13.2 | |
Steps (reduced) |
105 (13) |
108 (16) |
111 (19) |
114 (22) |
116 (1) |
119 (4) |
121 (6) |
123 (8) |
125 (10) |
127 (12) |
129 (14) |