23ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 22ed7/423ed7/424ed7/4 →
Prime factorization 23 (prime)
Step size 42.1229¢ 
Octave 28\23ed7/4 (1179.44¢)
Twelfth 45\23ed7/4 (1895.53¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 3

23 equal divisions of 7/4 (abbreviated 23ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 23 equal parts of about 42.1 ¢ each. Each step represents a frequency ratio of (7/4)1/23, or the 23rd root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 42.123
2 84.246 22/21, 23/22
3 126.369 14/13, 15/14
4 168.491 21/19, 23/21
5 210.614 17/15, 25/22
6 252.737 15/13, 22/19
7 294.86 25/21
8 336.983 17/14, 23/19
9 379.106 21/17
10 421.229 19/15
11 463.352 13/10, 17/13, 25/19
12 505.474
13 547.597
14 589.72 7/5
15 631.843 13/9
16 673.966 22/15, 25/17
17 716.089
18 758.212 14/9
19 800.334
20 842.457 21/13
21 884.58 5/3
22 926.703 17/10
23 968.826

Harmonics

Approximation of harmonics in 23ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -20.6 -6.4 +1.0 -6.2 +15.1 +1.0 -19.6 -12.9 +15.4 +18.8 -5.4
Relative (%) -48.8 -15.3 +2.4 -14.7 +35.9 +2.4 -46.4 -30.5 +36.5 +44.7 -12.9
Steps
(reduced)
28
(5)
45
(22)
57
(11)
66
(20)
74
(5)
80
(11)
85
(16)
90
(21)
95
(3)
99
(7)
102
(10)
Approximation of harmonics in 23ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -17.6 -19.6 -12.6 +2.0 -18.7 +8.7 -0.6 -5.2 -5.4 -1.7 +5.6
Relative (%) -41.8 -46.4 -30.0 +4.8 -44.4 +20.7 -1.5 -12.3 -12.9 -4.1 +13.2
Steps
(reduced)
105
(13)
108
(16)
111
(19)
114
(22)
116
(1)
119
(4)
121
(6)
123
(8)
125
(10)
127
(12)
129
(14)