27ed7/4
Jump to navigation
Jump to search
Prime factorization
33
Step size
35.8824¢
Octave
33\27ed7/4 (1184.12¢) (→11\9ed7/4)
Twelfth
53\27ed7/4 (1901.77¢)
(convergent)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 26ed7/4 | 27ed7/4 | 28ed7/4 → |
(convergent)
27 equal divisions of 7/4 (abbreviated 27ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 27 equal parts of about 35.9 ¢ each. Each step represents a frequency ratio of (7/4)1/27, or the 27th root of 7/4.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 35.882 | |
2 | 71.765 | 22/21, 23/22 |
3 | 107.647 | |
4 | 143.53 | |
5 | 179.412 | 10/9, 21/19 |
6 | 215.295 | 17/15, 26/23 |
7 | 251.177 | 15/13, 22/19, 23/20 |
8 | 287.06 | 13/11 |
9 | 322.942 | 23/19 |
10 | 358.824 | 21/17, 26/21 |
11 | 394.707 | |
12 | 430.589 | 9/7, 23/18 |
13 | 466.472 | 17/13 |
14 | 502.354 | |
15 | 538.237 | 15/11, 19/14, 26/19 |
16 | 574.119 | 7/5 |
17 | 610.001 | 10/7 |
18 | 645.884 | 13/9, 19/13 |
19 | 681.766 | |
20 | 717.649 | |
21 | 753.531 | 17/11 |
22 | 789.414 | 11/7 |
23 | 825.296 | 21/13 |
24 | 861.179 | 23/14 |
25 | 897.061 | |
26 | 932.943 | |
27 | 968.826 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -15.9 | -0.2 | +4.1 | +12.5 | -16.1 | +4.1 | -11.8 | -0.4 | -3.4 | +11.0 | +3.9 |
Relative (%) | -44.3 | -0.5 | +11.5 | +34.9 | -44.8 | +11.5 | -32.8 | -1.0 | -9.4 | +30.8 | +11.0 | |
Steps (reduced) |
33 (6) |
53 (26) |
67 (13) |
78 (24) |
86 (5) |
94 (13) |
100 (19) |
106 (25) |
111 (3) |
116 (8) |
120 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.9 | -11.8 | +12.3 | +8.2 | +10.9 | -16.3 | -2.2 | +16.6 | +3.9 | -4.8 | -10.0 |
Relative (%) | +24.8 | -32.8 | +34.4 | +23.0 | +30.5 | -45.3 | -6.1 | +46.4 | +11.0 | -13.5 | -27.9 | |
Steps (reduced) |
124 (16) |
127 (19) |
131 (23) |
134 (26) |
137 (2) |
139 (4) |
142 (7) |
145 (10) |
147 (12) |
149 (14) |
151 (16) |