27ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 26ed7/427ed7/428ed7/4 →
Prime factorization 33
Step size 35.8824¢ 
Octave 33\27ed7/4 (1184.12¢) (→11\9ed7/4)
Twelfth 53\27ed7/4 (1901.77¢)
(convergent)
Consistency limit 3
Distinct consistency limit 3

27 equal divisions of 7/4 (abbreviated 27ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 27 equal parts of about 35.9 ¢ each. Each step represents a frequency ratio of (7/4)1/27, or the 27th root of 7/4.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 35.882
2 71.765 22/21, 23/22
3 107.647
4 143.53
5 179.412 10/9, 21/19
6 215.295 17/15, 26/23
7 251.177 15/13, 22/19, 23/20
8 287.06 13/11
9 322.942 23/19
10 358.824 21/17, 26/21
11 394.707
12 430.589 9/7, 23/18
13 466.472 17/13
14 502.354
15 538.237 15/11, 19/14, 26/19
16 574.119 7/5
17 610.001 10/7
18 645.884 13/9, 19/13
19 681.766
20 717.649
21 753.531 17/11
22 789.414 11/7
23 825.296 21/13
24 861.179 23/14
25 897.061
26 932.943
27 968.826

Harmonics

Approximation of harmonics in 27ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -15.9 -0.2 +4.1 +12.5 -16.1 +4.1 -11.8 -0.4 -3.4 +11.0 +3.9
Relative (%) -44.3 -0.5 +11.5 +34.9 -44.8 +11.5 -32.8 -1.0 -9.4 +30.8 +11.0
Steps
(reduced)
33
(6)
53
(26)
67
(13)
78
(24)
86
(5)
94
(13)
100
(19)
106
(25)
111
(3)
116
(8)
120
(12)
Approximation of harmonics in 27ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +8.9 -11.8 +12.3 +8.2 +10.9 -16.3 -2.2 +16.6 +3.9 -4.8 -10.0
Relative (%) +24.8 -32.8 +34.4 +23.0 +30.5 -45.3 -6.1 +46.4 +11.0 -13.5 -27.9
Steps
(reduced)
124
(16)
127
(19)
131
(23)
134
(26)
137
(2)
139
(4)
142
(7)
145
(10)
147
(12)
149
(14)
151
(16)