9ed7/4

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 8ed7/4 9ed7/4 10ed7/4 →
Prime factorization 32
Step size 107.647¢ 
Octave 11\9ed7/4 (1184.12¢)
(semiconvergent)
Twelfth 18\9ed7/4 (1937.65¢) (→2\1ed7/4)
Consistency limit 3
Distinct consistency limit 2

9 equal divisions of 7/4 (abbreviated 9ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 9 equal parts of about 108⁠ ⁠¢ each. Each step represents a frequency ratio of (7/4)1/9, or the 9th root of 7/4.

Theory

Harmonics

Approximation of harmonics in 9ed7/4
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -15.9 +35.7 -31.8 +12.5 +19.8 -31.8 -47.6 -36.3 -3.4 +46.9 +3.9
Relative (%) -14.8 +33.2 -29.5 +11.6 +18.4 -29.5 -44.3 -33.7 -3.1 +43.6 +3.7
Steps
(reduced)
11
(2)
18
(0)
22
(4)
26
(8)
29
(2)
31
(4)
33
(6)
35
(8)
37
(1)
39
(3)
40
(4)
Approximation of harmonics in 9ed7/4
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -27.0 -47.6 +48.2 +44.1 +46.8 -52.1 -38.1 -19.2 +3.9 +31.0 -45.9 -11.9
Relative (%) -25.1 -44.3 +44.8 +41.0 +43.5 -48.4 -35.4 -17.9 +3.7 +28.8 -42.6 -11.1
Steps
(reduced)
41
(5)
42
(6)
44
(8)
45
(0)
46
(1)
46
(1)
47
(2)
48
(3)
49
(4)
50
(5)
50
(5)
51
(6)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 107.6 13/12, 14/13, 18/17, 20/19, 21/20, 22/21
2 215.3 8/7, 17/15
3 322.9 6/5, 11/9, 16/13, 19/16
4 430.6 13/10, 22/17
5 538.2 15/11, 19/14
6 645.9 10/7, 19/13, 22/15
7 753.5 17/11, 20/13
8 861.2 5/3, 13/8, 18/11, 21/13
9 968.8 7/4, 12/7