25ed11/5

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 24ed11/5 25ed11/5 26ed11/5 →
Prime factorization 52
Step size 54.6002¢ 
Octave 22\25ed11/5 (1201.2¢)
(convergent)
Twelfth 35\25ed11/5 (1911.01¢) (→7\5ed11/5)
Consistency limit 12
Distinct consistency limit 4

25 equal divisions of 11/5 (abbreviated 25ed11/5) is a nonoctave tuning system that divides the interval of 11/5 into 25 equal parts of about 54.6 ¢ each. Each step represents a frequency ratio of (11/5)1/25, or the 25th root of 11/5.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 54.6
2 109.2 15/14, 16/15, 17/16, 18/17
3 163.801 11/10
4 218.401 17/15, 25/22, 26/23
5 273.001 7/6, 20/17
6 327.601 6/5, 17/14, 23/19
7 382.201 5/4
8 436.801 9/7, 22/17
9 491.402 4/3
10 546.002 11/8, 15/11, 26/19
11 600.602 17/12, 24/17
12 655.202 16/11, 19/13, 22/15
13 709.802 3/2
14 764.402 14/9, 17/11, 25/16
15 819.003 8/5
16 873.603 5/3
17 928.203 12/7, 17/10
18 982.803 23/13
19 1037.403 11/6, 20/11
20 1092.003 15/8, 17/9
21 1146.604
22 1201.204 2/1
23 1255.804
24 1310.404 15/7, 17/8
25 1365.004 11/5

Harmonics

Approximation of harmonics in 25ed11/5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +9.1 +2.4 -1.7 +10.3 +16.4 +3.6 +18.1 -0.5 -1.7 +11.5
Relative (%) +2.2 +16.6 +4.4 -3.1 +18.8 +30.0 +6.6 +33.2 -0.9 -3.1 +21.0
Steps
(reduced)
22
(22)
35
(10)
44
(19)
51
(1)
57
(7)
62
(12)
66
(16)
70
(20)
73
(23)
76
(1)
79
(4)
Approximation of harmonics in 25ed11/5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -17.9 +17.6 +7.3 +4.8 +9.1 +19.3 -19.7 +0.7 +25.4 -0.5 -22.9
Relative (%) -32.8 +32.2 +13.5 +8.8 +16.6 +35.4 -36.1 +1.3 +46.6 -0.9 -41.9
Steps
(reduced)
81
(6)
84
(9)
86
(11)
88
(13)
90
(15)
92
(17)
93
(18)
95
(20)
97
(22)
98
(23)
99
(24)