5ed11/5
Jump to navigation
Jump to search
Prime factorization
5 (prime)
Step size
273.001¢
Octave
4\5ed11/5 (1092¢)
(semiconvergent)
Twelfth
7\5ed11/5 (1911.01¢)
(convergent)
Consistency limit
3
Distinct consistency limit
2
Prime factorization
5 (prime)
Step size
273.001¢
Octave
4\5ed11/5 (1092¢)
(semiconvergent)
Twelfth
7\5ed11/5 (1911.01¢)
(convergent)
Consistency limit
3
Distinct consistency limit
2
← 4ed11/5 | 5ed11/5 | 6ed11/5 → |
(semiconvergent)
(convergent)
5 equal divisions of 11/5 (abbreviated 5ed11/5) is a nonoctave tuning system that divides the interval of 11/5 into 5 equal parts of about 273 ¢ each. Each step represents a frequency ratio of (11/5)1/5, or the 5th root of 11/5.
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 273.0 | 7/6, 75/64 |
2 | 546.0 | 11/8, 15/11, 48/35 |
3 | 819.0 | 8/5, 21/13 |
4 | 1092.0 | 15/8, 32/17 |
5 | 1365.0 | 11/5 |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 4ed11/5 | 5ed11/5 | 6ed11/5 → |
(semiconvergent)
(convergent)
5 equal divisions of 11/5 (abbreviated 5ed11/5) is a nonoctave tuning system that divides the interval of 11/5 into 5 equal parts of about 273 ¢ each. Each step represents a frequency ratio of (11/5)1/5, or the 5th root of 11/5.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -108 | +9 | +57 | -56 | -99 | -93 | -51 | +18 | +109 | -56 | +66 |
Relative (%) | -39.6 | +3.3 | +20.9 | -20.6 | -36.2 | -34.0 | -18.7 | +6.6 | +39.8 | -20.6 | +24.2 | |
Steps (reduced) |
4 (4) |
7 (2) |
9 (4) |
10 (0) |
11 (1) |
12 (2) |
13 (3) |
14 (4) |
15 (0) |
15 (0) |
16 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -73 | +72 | -47 | +114 | +9 | -90 | +90 | +1 | -84 | +109 | +32 |
Relative (%) | -26.6 | +26.4 | -17.3 | +41.8 | +3.3 | -32.9 | +32.8 | +0.3 | -30.7 | +39.8 | +11.6 | |
Steps (reduced) |
16 (1) |
17 (2) |
17 (2) |
18 (3) |
18 (3) |
18 (3) |
19 (4) |
19 (4) |
19 (4) |
20 (0) |
20 (0) |