17ed7/4
Jump to navigation
Jump to search
Prime factorization
17 (prime)
Step size
56.9898¢
Octave
21\17ed7/4 (1196.78¢)
(semiconvergent)
Twelfth
33\17ed7/4 (1880.66¢)
(semiconvergent)
Consistency limit
5
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 16ed7/4 | 17ed7/4 | 18ed7/4 → |
(semiconvergent)
(semiconvergent)
17 equal divisions of 7/4 (abbreviated 17ed7/4) is a nonoctave tuning system that divides the interval of 7/4 into 17 equal parts of about 57 ¢ each. Each step represents a frequency ratio of (7/4)1/17, or the 17th root of 7/4.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 57 | 24/23 |
2 | 114 | 14/13, 15/14, 16/15, 17/16 |
3 | 171 | 11/10, 21/19, 23/21 |
4 | 228 | 8/7, 17/15, 23/20 |
5 | 284.9 | 7/6, 13/11, 19/16, 20/17 |
6 | 341.9 | 16/13, 17/14, 23/19 |
7 | 398.9 | 5/4, 14/11, 19/15, 24/19 |
8 | 455.9 | 13/10, 17/13, 21/16, 22/17 |
9 | 512.9 | 4/3, 19/14, 23/17 |
10 | 569.9 | 7/5, 11/8 |
11 | 626.9 | 10/7, 23/16 |
12 | 683.9 | 3/2 |
13 | 740.9 | 17/11, 20/13, 23/15 |
14 | 797.9 | 8/5, 11/7, 19/12 |
15 | 854.8 | 13/8, 23/14 |
16 | 911.8 | 17/10, 22/13 |
17 | 968.8 | 7/4, 23/13 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.2 | -21.3 | -6.4 | +6.2 | -24.5 | -6.4 | -9.6 | +14.4 | +3.0 | +8.9 | -27.7 |
Relative (%) | -5.6 | -37.4 | -11.3 | +10.9 | -43.0 | -11.3 | -16.9 | +25.3 | +5.2 | +15.7 | -48.6 | |
Steps (reduced) |
21 (4) |
33 (16) |
42 (8) |
49 (15) |
54 (3) |
59 (8) |
63 (12) |
67 (16) |
70 (2) |
73 (5) |
75 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.7 | -9.6 | -15.1 | -12.9 | -3.8 | +11.2 | -25.4 | -0.2 | -27.7 | +5.7 | -14.2 |
Relative (%) | +8.2 | -16.9 | -26.5 | -22.6 | -6.7 | +19.6 | -44.6 | -0.4 | -48.6 | +10.0 | -25.0 | |
Steps (reduced) |
78 (10) |
80 (12) |
82 (14) |
84 (16) |
86 (1) |
88 (3) |
89 (4) |
91 (6) |
92 (7) |
94 (9) |
95 (10) |